DOI QR코드

DOI QR Code

ECG signal compression based on B-spline approximation

B-spline 근사화 기반의 심전도 신호 압축

  • 류춘하 (경북대학교 IT대학 전자공학부) ;
  • 김태훈 (경북대학교 IT대학 전자공학부) ;
  • 이병국 (동서대학교 컴퓨터정보공학부) ;
  • 최병재 (대구대학교 전자공학부) ;
  • 박길흠 (경북대학교 IT대학 전자공학부)
  • Received : 2011.06.17
  • Accepted : 2011.10.15
  • Published : 2011.10.25

Abstract

In general, electrocardiogram(ECG) signals are sampled with a frequency over 200Hz and stored for a long time. It is required to compress data efficiently for storing and transmitting them. In this paper, a method for compression of ECG data is proposed, using by Non Uniform B-spline approximation, which has been widely used to approximation theory of applied mathematics and geometric modeling. ECG signals are compressed and reconstructed using B-spline basis function which curve has local controllability and control a shape and curve in part. The proposed method selected additional knot with each step for minimizing reconstruction error and reduced time complexity. It is established that the proposed method using B-spline approximation has good compression ratio and reconstruct besides preserving all feature point of ECG signals, through the experimental results from MIT-BIH Arrhythmia database.

심전도 신호는 일반적으로 200Hz 이상의 주파수로 표본화 하므로 장시간의 심전도 신호를 획득할 경우 데이터가 방대해진다. 이러한 신호를 저장 및 전송하기 위해서는 효율적인 신호 압축을 필요로 한다. 본 논문에서는 B-spline 근사화를 이용하여 심전도 신호를 압축하는 방법을 제안한다. B-spline 곡선의 국부적 제어성(local controllability) 특성으로 인하여 원신호를 부분적으로 근사화할 수 있으며, 이를 통하여 방대한 심전도 신호를 압축할 수 있다. 따라서 본 논문에서는 응용수학의 근사이론 및 기하학적 모델링에 널리 사용되고 있는 비균일 B-spline 근사화 기법으로 효율적인 압축 방안을 제시한다. 제안한 알고리즘의 유효성을 확인하기 위해 실제 심전도 임상 데이터인 MIT-BIH 데이터베이스를 이용하여 실험을 수행하며, 그 결과로부터 제안한 기법을 이용한 B-spline 근사화 압축 방법의 효용성을 입증한다.

Keywords

References

  1. F. Enseleit and F. Duru, "Long-term continuous external electrocardiographic recording: A review," Europace, vol. 8, no. 4, pp. 255-266, 2006. https://doi.org/10.1093/europace/euj054
  2. B. J. Schijvennaars, G. Van Herpen, and J. A. Kors, "Intraindividual variability in electrocardiograms," Journal of Electrocardiology, vol. 41, no. 3, pp. 190-196, 2008. https://doi.org/10.1016/j.jelectrocard.2008.01.012
  3. H. J. Kim, R. F. Yazicioglu, P. Merken, C. Van Hoof, and H. J. Yoo, "ECG signal compression and classification algorithm with quad level vector for ECG holter system," IEEE Trans. Information Technology in Biomedicine, vol. 14, no. 1, pp. 93-100, 2010. https://doi.org/10.1109/TITB.2009.2031638
  4. F. Jager, I. Koren, and L. Gyergyek, "Multiresolut ional representation and analysis of ECG waveforms," Proceedings of Computers in Cardiology, pp. 547-550, 1990.
  5. J. Abenstein and W. Tompkins, "A new data-reduction algorithm for real-time ECG analysis," IEEE Trans. Biomedical Engineering, vol. BME-29, no. 1, pp. 43-48, 1982. https://doi.org/10.1109/TBME.1982.324962
  6. M. Benmalek and A. Charef, "Digital fractional order operators for R-wave detection in electrocardiogram signal," IET Signal Processing, vol. 3, no. 5, pp. 381-391, 2009. https://doi.org/10.1049/iet-spr.2008.0094
  7. Q. Zhang, A. I. Manriquez, C. Medigue, Y. Papelier, and M. Sorine, "An algorithm for robust and efficient location of T-wave ends inelectrocardiograms," IEEE Trans. Biomedical Engineering, vol. 53, no. 12, pp. 2544-2552, 2006. https://doi.org/10.1109/TBME.2006.884644
  8. J. P. Martinez, R. Almeida, S. Olmos, A. P. Rocha, and P. Laguna, "A wavelet-based ECG delineator: Evaluation on standard databases," IEEE Trans. Biomedical Engineering, vol. 51, no. 4, pp. 570-581, 2004. https://doi.org/10.1109/TBME.2003.821031
  9. S. Jalaleddine, C. Hutchens, R. Strattan. and W. Coberly, "ECG data compression techniques-A Unified approach," IEEE Trans. Biomedical Engineering, vol. 37, pp. 329-343, 1990. https://doi.org/10.1109/10.52340
  10. M. Unser, A. Aldroubi, and M. Eden, "B-spline signal processing: Part I-Theory," IEEE Trans. Signal Processing, vol. 41, no. 2, pp. 821-833, 1993. https://doi.org/10.1109/78.193220
  11. M. Karczewicz, M. Hamalainen, M. Gabbouj, Multiple knot spline approximation for ECG data compression, Proc. IEEE Workshop on Nonlinear Signal and Image Processing, Neos-Marmaras, Halkidiki, Greece, 20-22 June 1995, pp487-490.
  12. Yaniv Zigel, Atnon Cohen, Amos Katz, "The Weighted Diagnostic Distortion Measure for the ECG Signal Compression", IEEE Trans. Biomed. Eng., vol 47, no. 11, Nov. 2000.