This study compared the plywood demand prediction accuracy of econometric and vector autoregressive models using Korean data. The econometric model of plywood demand was specified with three explanatory variables; own price, construction permit area, dummy. The vector autoregressive model was specified with lagged endogenous variable, own price, construction permit area and dummy. The dummy variable reflected the abrupt decrease in plywood consumption in the late 1990's. The prediction accuracy was estimated on the basis of Residual Mean Squared Error, Mean Absolute Percentage Error and Theil's Inequality Coefficient. The results showed that the plywood demand prediction can be performed more accurately by econometric model than by vector autoregressive model.
This study compared the accuracy of partial multivariate and vector autoregressive models for lumber demand prediction in Korea. The partial multivariate model has three explanatory variables; own price, construction permit area and dummy. The dummy variable reflected the boom of lumber demand in 1988, and the abrupt decrease in 1998. The VAR model consists of two endogenous variables, lumber demand and construction permit area with one lag. On the other hand, the prediction accuracy was estimated by Root Mean Squared Error. The results showed that the estimation by partial multivariate and vector autoregressive model showed similar explanatory power, and the prediction accuracy was similar in the case of using partial multivariate and vector autoregressive model.
Journal of the Korean Data and Information Science Society
/
제25권4호
/
pp.807-817
/
2014
본 논문은 최근 많은 관심을 받는 미세먼지 (PM10)의 일별 평균농도에 대해서 전국 16개 시도에서 2008년부터 2011년까지 관측한 다변량 시계열 자료에 대한 연구이다. 다변량 시계열 모형을 이용해서 시간 및 공간에 대한 상관관계를 동시에 고려, 일변량 혹은 특정 지역에 국한해서 분석한 기존의 연구와 차별성을 두었다. 또한 Davis 등 (2013)이 제안한 부분 스펙트럼 일관성 (partial spectral coherence)을 통해 다른 지역간의 상호 의존성을 파악하고 이를 토대로 변수 선택을 통해 희박벡터자기회귀모형 (sVAR; sparse vector autoregressive model)을 적합하는 방법론을 적용하여 고차원 자료 분석의 단점 및 한계를 보완하였으며 예측력 비교를 통해서 sVAR 모형 적합의 타당성을 검증하였다.
This study aims to analyze causalities among Hairtail prices by distribution channel using a vector autoregressive model. This study applies unit-root test for stability of data, uses Granger causality test to know interaction among Hairtail Prices by distribution channel, and employes the vector autoregressive model to estimate statistical impacts among t-2 period variables used in model. Analyzing results of this study are as follows. First, ADF, PP, and KPSS tests show that the change rate of Hairtail price by distribution channel differentiated by logarithm is stable. Second, a Granger causality test presents that the producer price of Hairtail leads the wholesale price and then the wholesale price leads the consumer price. Third, the vector autoregressive model suggests that the change rate of Hairtail producer price of t-2 period variables statistically, significantly impacts change rates of own, wholesale, and consumer prices at current period. Fourth, the impulse response analysis indicates that impulse responses of the structural shocks with a respectively distribution channel of the Hairtail prices are relatively more powerful in own distribution channel than in other distribution channels. Fifth, a forecast error variance decomposition of the Hairtail prices points out that the own price has relatively more powerful influence than other prices.
Traditional international trade theory assumes that import goods and domestically produced goods of the same industry are equal in quality. However the substitutability of the two goods is imperfect. This article estimated the import functions of pulp and paper using econometric and vector autoregressive models, and calculated the elasticities of substitution between imported and domestically produced pulp and paper. The import of pulp is inelastic to import price and domestic price, and elastic to national income in econometric model. And it is inelastic to import price, domestic price and national income in vector autoregressive model. On the other hand, the import of paper is inelastic to domestic price, and elastic to import price and national income in econometric model. And it is inelastic to import price and domestic price, and elastic to national income in vector autoregressive model. The elasticity of substitution between imported and domestically produced pulp was positive, and the elasticity was respectively 0.42 and 0.20 in econometric and vector autoregressive models. This may be because of the high proportion of imports. On the other hand, the elasticity of substitution between imported and domestically produced paper was positive, and the elasticity was respectively 0.75 and 0.81 in econometric and vector autoregressive models. This may be because the quality of imported paper is different from that of domestically produced paper.
Communications for Statistical Applications and Methods
/
제29권1호
/
pp.41-51
/
2022
We forecast the US oil consumption level taking advantage of google trends. The google trends are the search volumes of the specific search terms that people search on google. We focus on whether proper selection of google trend terms leads to an improvement in forecast performance for oil consumption. As the forecast models, we consider the least absolute shrinkage and selection operator (LASSO) regression and the structured regularization method for large vector autoregressive (VAR-L) model of Nicholson et al. (2017), which select automatically the google trend terms and the lags of the predictors. An out-of-sample forecast comparison reveals that reducing the high dimensional google trend data set to a low-dimensional data set by the LASSO and the VAR-L models produces better forecast performance for oil consumption compared to the frequently-used forecast models such as the autoregressive model, the autoregressive distributed lag model and the vector error correction model.
Journal of the Korean Data and Information Science Society
/
제23권6호
/
pp.1093-1102
/
2012
본 연구에서는 다변량시계열모형인 VAR (vector autoregressive regression)모형에 의하여 금리 스프레드의 시계열예측을 수행하였다. 국내외 거시경제변수들 중에서 교차상관분석 및 그랜져인과 검정을 통하여 상호간에 설명력이 있는 변수들을 추출하여 VAR모형의 시계열변수로 사용하였다. 마지막 12개월의 예측치에 대한 MAPE (mean absolute percentage error)와 RMSE (root mean square error)에 근거하여 모형의 예측력을 단일변량 시계열모형인 AR (autoregressive regression) 모형과 비교하였다.
S&P 500과 RUSSELL 2000, DJIA, Nasdaq 100 4가지 미국 주가지수의 실현변동성(realized volatility, RV)을 예측하는데 있어서 사람들의 관심 지표로 삼을 수 있는 인터넷 검색량(search volume, SV) 지수와 내재변동성(implied volatility, IV)를 이용하여 LSTM 딥러닝(deep learning) 방법으로 RV의 예측력을 높이고자하였다. SV을 이용한 LSTM 방법의 실현변동성 예측력이 기존의 기본적인 vector autoregressive (VAR) 모형, vector error correction (VEC)보다 우수하였다. 또한, 최근 제안된 RV와 IV의 공적분 관계를 이용한 vector error correction heterogeneous autoregressive (VECHAR) 모형보다도 전반적으로 예측력이 더 높음을 확인하였다.
Dynamic cutting process can be represented by a closed-loop0 system consisted of machine tool structure and pure cutting process. On this paper, cutting system is modeled as a six degrees of freedom system using MARV(Modified Autoregressive Vector) model in face milling, and the modeled dynamic cutting process is used to predict dynamic cutting force component. Based on the double modulation principle, a dynamic cutting force model is developed. From the simulated relative displacements between tool and workpiece the dynamic force domponents can be calculated, and the dynamic force can be obtained by superposition of the static force and dynamic force components. The simulated dynamic cutting forces have a good agreement with the measured cutting force.
Communications for Statistical Applications and Methods
/
제29권1호
/
pp.53-64
/
2022
High dimensional time series is gaining considerable attention in recent years. The sparse vector heterogeneous autoregressive (VHAR) model proposed by Baek and Park (2020) uses adaptive lasso and debiasing procedure in estimation, and showed superb forecasting performance in realized volatilities. This paper extends the sparse VHAR model by considering non-convex penalties such as SCAD and MCP for possible bias reduction from their penalty design. Finite sample performances of three estimation methods are compared through Monte Carlo simulation. Our study shows first that taking into cross-sectional correlations reduces bias. Second, nonconvex penalties performs better when the sample size is small. On the other hand, the adaptive lasso with debiasing performs well as sample size increases. Also, empirical analysis based on 20 multinational realized volatilities is provided.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.