• Title/Summary/Keyword: Vector analysis

Search Result 3,506, Processing Time 0.031 seconds

A Study on Air Flow Characteristics of Mid-mower for Tractor(I) (트랙트용 미드 모어의 공기 유동 특성에 관한 연구(I))

  • Kim, Hae-Ji;Kim, Sam-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.27-35
    • /
    • 2015
  • Recently, the work machine is widely used in the agricultural machine and to use the power source of the tractor, the mower had been widely used as a working machine for mowing. The mower is classified as a front mower, mid-mower, and rear mower according to the mounting position of the lower frame on tractor. The main structure of mower is composed of deck, gearbox, and blade. This study concerns a study on air flow characteristics of Mid-mower for tractor. An air flow characteristics of the Mid-mower deck was evaluated by the velocity vector, flow path, and total air flow according to the number of revolutions. As the analysis results, The inner path of designed deck had no effect on air flow.

Model-based Fault Diagnosis Applied to Vibration Data (진동데이터 적용 모델기반 이상진단)

  • Yang, Ji-Hyuk;Kwon, Oh-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.12
    • /
    • pp.1090-1095
    • /
    • 2012
  • In this paper, we propose a model-based fault diagnosis method applied to vibration data. The fault detection is performed by comparing estimated parameters with normal parameters and deciding if the observed changes can be explained satisfactorily in terms of noise or undermodelling. The key feature of this method is that it accounts for the effects of noise and model mismatch. And we aslo design a classifier for the fault isolation by applying the multiclass SVM (Support Vector Machine) to the estimated parameters. The proposed fault detection and isolation methods are applied to an engine vibration data to show a good performance. The proposed fault detection method is compared with a signal-based fault detection method through a performance analysis.

Analysis on Occlusion Problem of Landmark-based Homing Navigation Methods (랜드마크 기반 귀소 내비게이션 알고리즘의 가림 현상 분석 및 비교)

  • Yu, Seung-Eun;Kim, Dae-Eun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.6
    • /
    • pp.596-601
    • /
    • 2011
  • Autonomous navigating algorithms for mobile robots have been proved to be a difficult task. Based on the excellent homing performance shown by many insects, bio-inspired navigation algorithms for robotic experiments have been widely researched and applied to the design of navigational strategies for mobile robots. In this paper, among them, we analyze two simple landmark navigation methods their strengths and limits. We investigate the effect of the occlusion problem mainly, which is an important yet tough problem in many landmark navigation algorithms. In the point of view of the error of homing vector and the performance of the homing paths in the environment with artificial occlusions, we investigate the effect of occlusion problem in both methods in order to further study on solutions.

The Study on Optimum Ventilation System during Long Tunnel Construction (굴착중인 장대터널 내 최적의 환기시스템에 관한 연구)

  • Lim, Han-Uk;Oh, Byung-Hwa
    • Journal of Industrial Technology
    • /
    • v.26 no.A
    • /
    • pp.3-15
    • /
    • 2006
  • To determine the optimum ventilation systems during long tunnel excavation, the velocity vector profile and the contaminant's distribution at working place are studied using 2-D, 3-D numerical analysis. The main results can be summarized as follow; In case of long tunnels, blower-exhaust-mixture types which enable to use soft blast ducts is most appropriate in terms of ventilation and economical efficiency. Of the same ventilation types, ventilation efficiency has a difference according to blast ducts and the distance between fan and working place. The 3-D numerical result shows that arranging blower and exhaust ducts in the right and left corners of the tunnel respectively is effective to discharge contaminant. The result of the real measurement shows that CO concentration can be reduced to below 50 ppm, which is regulation value, as 16-minutes fan operation goes on.

  • PDF

Food Powder Classification Using a Portable Visible-Near-Infrared Spectrometer

  • You, Hanjong;Kim, Youngsik;Lee, Jae-Hyung;Jang, Byung-Jun;Choi, Sunwoong
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.4
    • /
    • pp.186-190
    • /
    • 2017
  • Visible-near-infrared (VIS-NIR) spectroscopy is a fast and non-destructive method for analyzing materials. However, most commercial VIS-NIR spectrometers are inappropriate for use in various locations such as in homes or offices because of their size and cost. In this paper, we classified eight food powders using a portable VIS-NIR spectrometer with a wavelength range of 450-1,000 nm. We developed three machine learning models using the spectral data for the eight food powders. The proposed three machine learning models (random forest, k-nearest neighbors, and support vector machine) achieved an accuracy of 87%, 98%, and 100%, respectively. Our experimental results showed that the support vector machine model is the most suitable for classifying non-linear spectral data. We demonstrated the potential of material analysis using a portable VIS-NIR spectrometer.

Structural damage identification using incomplete static displacement measurement

  • Lu, Z.R.;Zhu, J.J.;Ou, Y.J.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.251-257
    • /
    • 2017
  • A local damage identification method using measured structural static displacement is proposed in this study. Based on the residual force vector deduced from the static equilibrium equation, residual strain energy (RSE) is introduced, which can localize the damage in the element level. In the case of all the nodal displacements are used, the RSE can localize the true location of damage, while incomplete displacement measurements are used, some suspicious damaged elements can be found. A model updating method based on static displacement response sensitivity analysis is further utilized for accurate identification of damage location and extent. The proposed method is verified by two numerical examples. The results indicate that the proposed method is efficient for damage identification. The advantage of the proposed method is that only limited static displacement measurements are needed in the identification, thus it is easy for engineering application.

Cutting Force Analysis in End Milling Process for High-Speed Machining of Difficult-to-Cut Materials (난삭재 고속가공에서의 엔드밀링 공정의 절삭력 해석)

  • 전태수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.359-364
    • /
    • 1999
  • Due to rapid growth of die and mould industries, it is urgently required to maximize the productivity and the efficiency of machining. In recent years, owing to the development of new kinds of material, die and mould materials are much harder and it is more difficult to cut. In this study, the workpiece SKD11(HRC45) is cut with TiAlN coated tungsten-carbide cutting tools. To find the general characteristics of difficult-to-cut materials, orthogonal turning test is performed. Orthogonal cutting theory can be expanded to oblique cutting model. The oblique cutting process in the small cutting edge element has been analyzed as orthogonal cutting process in the plane containing the cutting velocity vector and chip-flow vector. Hence, with the orthogonal cutting data obtained from orthogonal turning test, the cutting forces can be analyzed through oblique cutting model. The simulation results have shown a fairy good agreement with the test results.

  • PDF

SINGULAR THIRD-ORDER 3-POINT BOUNDARY VALUE PROBLEMS

  • Palamides, Alex P.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.697-710
    • /
    • 2010
  • In this paper, we prove existence of infinitely many positive and concave solutions, by means of a simple approach, to $3^{th}$ order three-point singular boundary value problem {$x^{\prime\prime\prime}(t)=\alpha(t)f(t,x(t))$, 0 < t < 1, $x(0)=x'(\eta)=x^{\prime\prime}(1)=0$, (1/2 < $\eta$ < 1). Moreover with respect to multiplicity of solutions, we don't assume any monotonicity on the nonlinearity. We rely on a combination of the analysis of the corresponding vector field on the phase-space along with Knesser's type properties of the solutions funnel and the well-known Krasnosel'ski$\breve{i}$'s fixed point theorem. The later is applied on a new very simple cone K, just on the plane $R^2$. These extensions justify the efficiency of our new approach compared to the commonly used one, where the cone $K\;{\subset}\;C$ ([0, 1], $\mathbb{R}$) and the existence of a positive Green's function is a necessity.

Flow Field Analysis of Smoke in a Rectangular Tunnel

  • Lee, Yong-Ho;Park, Sang-Kyoo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.679-685
    • /
    • 2009
  • In order to simulate a smoke or poisonous gas emergency in a rectangular tunnel and to investigate a better way to exhaust the smoke, the characteristics of smoke flow have been analyzed using flow field data acquired by Particle Image Velocimetry(PIV). Olive oil has been used as tracer particles with the kinematic viscosity of air, $1.51{\times}10^{-5}\;m^2/s$. The investigation has done in the range of Reynolds number of 1600 to 5333 due to the inlet velocities of 0.3 m/s to 1 m/s respectively. The average velocity vector and instantaneous kinematic energy fields with respect to the three different Reynolds numbers are comparatively discussed by the Flow Manager. In general, the smoke flow becomes more disorderly and turbulent with the increase of Reynolds number. Kinematic energy in the measured region increases with the increase of Reynolds number while decreasing at the leeward direction about the outlet region.

A Prediction Model Based on Relevance Vector Machine and Granularity Analysis

  • Cho, Young Im
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.157-162
    • /
    • 2016
  • In this paper, a yield prediction model based on relevance vector machine (RVM) and a granular computing model (quotient space theory) is presented. With a granular computing model, massive and complex meteorological data can be analyzed at different layers of different grain sizes, and new meteorological feature data sets can be formed in this way. In order to forecast the crop yield, a grey model is introduced to label the training sample data sets, which also can be used for computing the tendency yield. An RVM algorithm is introduced as the classification model for meteorological data mining. Experiments on data sets from the real world using this model show an advantage in terms of yield prediction compared with other models.