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Abstract

In this paper, a yield prediction model based on relevance vector machine (RVM) and a granular
computing model (quotient space theory) is presented. With a granular computing model,
massive and complex meteorological data can be analyzed at different layers of different
grain sizes, and new meteorological feature data sets can be formed in this way. In order to
forecast the crop yield, a grey model is introduced to label the training sample data sets, which
also can be used for computing the tendency yield. An RVM algorithm is introduced as the
classification model for meteorological data mining. Experiments on data sets from the real
world using this model show an advantage in terms of yield prediction compared with other
models.
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1. Introduction

The forecast of yield by analyzing meteorological data sets usually can be accomplished with
a statistical model (such as regression model, grey model, or Markov model), a neural network,
or another method. The disadvantage of these models is that the fluctuation of the yield caused
by the meteorological factors cannot be calculated accurately. Thus, a new kind of model
based on the quotient space model of granular computing theory is put forward in this paper.
Under the framework of quotient space, a grey model [1] combined with a relevance vector
machine (RVM) model [2], which can be called a GM-RVM model, is constructed as a forecast
model based on meteorological data analysis.

The aim of adopting quotient space granular computing model is that it can investigate
the conversion, interaction and dependency with quotient spaces at different granularities in
macrocosmic analysis: 1) knowledge discovery at different granularities 2) reduction of the
computational complexity of problem solving. Additionally, the data mining of quotient spaces
with different granular structure can be dealt with in microcosmic analysis by adopting the
RVM model. On the other hand, grey model can analyze the long term tendency of trend yield,
and RVM classification model can reflect the fluctuation of yield caused by the meteorological
factors more actually. So the analysis of meteorological time series and forecast of yield can
be better done with the combination of these two models.

2. The Framework of Quotient Space Theory

In [1] a quotient space model of problem solving is presented. The model was intended to
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describe the universe with different grain-sizes easily and be
used for analyzing problem hierarchically [3].

2.1 World Presentations at Different Granularities

Suppose that a triple (X, f, T ) describes a problem solving
space, where X denotes the problem domain, f(x) indicates
the attributes (or features) of domain X or is denoted by a
function, f(x) : X → Y , and T is the structure of domain X
[4].

Suppose that X represents the problem domain at the finest
grain size. When domain X is viewed at a coarser grain size,
[X] is a coarse-grained domain. A coarser universe ([X]) can
be defined by an equivalence relation (R) on X . That is, an
element in [X] is equivalent to a set of elements and an equiv-
alence relation (R) on X . Thus, [X] consists of all of the
equivalence classes obtained by R. ([X], [f ], [T ]) is called the
quotient space of (X, f, T ).

2.2 The Relation between Different Grain Size Worlds

Definition 2.1. Under the relation “<,” R is a complete semi-
order lattice.

From this definition, a relation is obtained: R0 < R1 <

· · · < Rn, where Rn is the finest relation in R, and R0 is the
coarsest relation in R. Thus, the quotient space from R can be
viewed as a hierarchical structure.

2.3 Attribute Preserving

1) In the coarse-grained domain, if there does not exist a solu-
tion, there is no solution in the fine-grained domain.
2) Assuming there is a solution in semi-order quotient space
(X1, f1, T1), (X2, f2, T2), there will be a solution in their com-
bined quotient space (X3, f3, T3).

2.4 Fuzzy Quotient Space

In [5], the quotient space model is extended to the fuzzy gran-
ular world, and two main conclusions are given. First, the
following four statements are equivalent: 1) a fuzzy equiva-
lence relation given in universe X , 2) a normalized isosceles
distance given in quotient space [X], 3) a hierarchical structure
{X(λ)} given in X , 4) a fuzzy knowledge base given in X .
The third statement is the most essential of the four statements.
Consequently, knowledge of the granular structure can be ac-
quired once the hierarchy is given. Second, a whole world with
different fuzzy granularities composes a complete semi-order

lattice. The results provide a powerful mathematical model and
tool for granular computing.

3. RVM Algorithm

In [2], RVM is introduced, which is a probabilistic sparse kernel
model identical in functional form to the SVM model. SVM
has been employed for solving classification and forecasting
problem like [6]. RVM model also can be applied for solving
classification problem successfully such as [7, 8]. The most
compelling feature of the RVM is that, while capable of gen-
eralization performance comparable to an equivalent SVM, it
typically utilizes dramatically fewer kernel functions. Further-
more, the RVM suffers from none of the other limitations of
SVM, such as the kernel function having to satisfy Mercer’s
condition and the necessity of estimating the error/margin trade-
off parameter “C.” Because of the advantages of RVM, it was
chosen as the classification algorithm in our model in this study.
The RVM model is described as follows:

Given a training data set of input-target pairs {xn, tn}Nn=1,
xn ∈ Rd, tn ∈ R, the output of RVM is:

y(x) =

N∑
i=1

wiK(x, xi) + w0, (1)

where K(x, xi) is a kernel function, and wi is the weight value
for the model.

Assume that p(t|x) is a Gaussian N(t|y(x), σ2). The mean
of this distribution for a given x is modeled by y(x) which is
defined in Eq. (1) for SVM. The likelihood of the dataset can
be written as

p(t|w, σ2) = (2πσ2)−N/2 exp

{
− 1

2σ2
‖t− Φw‖2

}
, (2)

where t = (t1 · · · tN ),w = (w0, ..., wN ) and Φ is theN×(N+

1) ‘design’ matrix with Φnm = K(xn, xm−1) and Φn1 = 1.
In order to overcome the overfitting problem caused by the
maximum-likelihood estimation of w and σ2 from Eq. (2).
w is assigned with the following prior conditional probability
distribution:

p(w|α) =
∏N

i=0
N(wi|0, α−1i ), (3)

with α as a vector of N + 1 hyperparameters.

The posterior probability over the weights can be obtained
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from Bayes’ rule:

p(w|t, α, σ2) =(2π)−
(N+1)

2 |Σ|−
1
2

× exp

{
−1

2
(w − µ)T

−1∑
(w − µ)

}
, (4)

with
∑

= (ΦTBΦ + A)−1, A = diag(α0, α1, · · · , αN ), and
µ =

∑
ΦTBt, B = σ−2IN .

By integrating out the weights, the marginal likelihood can
be obtained for the hyperparameters:

p(t|α, σ2) =(2π)−
N
2 |B−1 + ΦA−1ΦT |− 1

2

× exp

{
−1

2
tT (B−1 + ΦA−1ΦT )−1t

}
. (5)

Values of α and σ2 that maximize (5) cannot be obtained
in a closed form with two alternative formulae for iterative re-
estimation of α. First, by considering the weights as “hidden”
variables, an EM approach gives:

αnewi =
1

〈w2
i 〉p(w|t,α,σ2)

=
1∑
ii +µ2

i

. (6)

Second, direct differentiation of (5) and rearranging gives:

αnewi =
γi
µ2
i

, (7)

where γi = 1− αi
∑
ii.

For the noise variance, both methods lead to the same re-
estimate:

(σ2)new = ‖t− Φµ‖2
/

(N −
∑
i

γi). (8)

4. Granular Analysis of Meteorological Data

A quotient space granular model can combine itself with rough
set theory [9] and fuzzy set theory [10, 11] organically [5]. It
emphasizes the conversion and dependency of a universe with
different grain sizes and can be helpful for data mining from
different granularities.

Basic issues of granular computing may be studied from two
related aspects: the construction of granules and computation
with granules. The former deals with the formation, represen-
tation, and interpretation of granules, whereas the latter deals
with the utilization of granules in problem solving [12].

4.1 Construction of Information Granules

Quotient space theory is used for considering a problem from
different granules, and choosing a proper grain-size of a uni-
verse for problem solving.

Four general principles are discussed in quotient space theory
for partitioning: 1) attribute-based method, 2) projection-based
method, 3) the function-based method, 4) the constraint-based
method [4]. This paper adopts (1) for partitioning the problem
domain, and the domain X is constructed of meteorological
time series data sets. The attributes of f(x) are constructed by
key meteorological factors: f1(x), f2(x), f3(x), where f1(x):
average temperature; f2(x): rainfall; f3(x): sunlight, and the
meteorological time attribute function f4(x) which is used for
constructing the set of equivalence relation R. Against the char-
acteristics of meteorological time series data sets, domain X
is partitioned by f4(x). The original grain-size for X stored
in a database is a day. Suppose that grain size L equals one
day, 10 days, or one month, by which X can be fuzzy par-
titioned as X(L). Additionally, these partitions can be con-
structed as hierarchical structures with three levels, which are
([X], [f ], [T ])day , ([X], [f ], [T ])10days, ([X], [f ], [T ])month.

If the grain size is too fine, the model cannot obtain good
results. Conversely, if the grain size is too coarse, the model
cannot reflect the characteristics of the meteorological time
series sensitively. Thus, a proper partition may not be a sin-
gle grain size, but some combination of different granularities
should be required. Combination technology in quotient space
theory will not only emphasize the key factors but will also not
neglect the subordinate factors.

The combination in quotient space includes a combination
of domains, a combination of structure, and a combination of
attribute functions. This paper discusses the combination of
domains.

Definition 4.1. Assume that R1 and R2 are any two equiva-
lence relations onX . IfR3 is the lowest upper bound ofR1 and
R2 in the semi-order lattice, then R3 is the combination of R1

and R2. If X1 = {ai} and X2 = {bj} are two partitions with
respect to R1 and R2, respectively, then the combination of X1

and X2 can be represented by X3 = {ai
⋂
bj |ai ∈ X1, bj ∈

X2}.
By the “no-solution preserving property” in quotient space

model which states that if there does not exist a solution in the
coarse-grained domain, there is no solution in the fine-grained
domain, the computational complexity of problem solving can
be reduced.
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Figure 1. The structure of our prediction model.

4.2 Yield Forecast Model Based on Analysis of Meteoro-
logical Data

The structure of our model is depicted in Figure 1, and the
detailed steps are presented as follows:

Step 1: Domain X , in which every sample x is part of an
annual meteorological character time series for crop yield, that
is every day’s sunlight, average temperature and rainfall in
special period (s1 to s2), is partitioned by time attribute f4(x),
which equals one day, 10 days, and one month. Thus, a quotient
space with three levels is constructed

Step 2: A combination of the three levels can be conducted by
a combination method. One possible granular analysis model is
described below.

First, every month in the chosen period (s1 to s2) is analyzed
with the different grain sizes and combined with a combination
method. The key meteorological factors (g) are given, where
g ∈ {sunlight, averagetemperature, rainfall}, and gm repre-
sents the subordinate factors. Then, a combination is conducted
for the key factors (g) with the finer grain size. By Definition
4.1, the result is the intersection grain size of 10 days, which
is ḡa, ḡb and ḡc (the average value of the first 10 days, middle
10 days, and last 10 days), the gm holds the value ḡm (average
value of month). Finally, the time series in this month is: ḡa, ḡb,
ḡc, and ḡm. In this way every month in this period (s1 to s2) is
discussed, and new feature data sets can be formed.

Step 3: Ŷ = Ŷt + Ŷw, where Ŷ is the crop yield, and Ŷt is
the trend yield , Ŷw is the meteorological yield.

1) Annual ȳt can be obtained by grey model GM(1, 1), and
regarded as the trend yield.

2) The fluctuation of the forecast: z = (yt − ȳt/ȳt, t = 1,
2, ..., n, where yt is the actual yield of year t, ȳt is the trend

yield of year t, and yt − ȳt is regarded as the meteorological
yield. Thus, the meteorological yield can be separated in this
way and the decision label will be determined depending on
this fluctuation forecast.

Step 4: First, the meteorological feature data sets constructed
from Step 2 are combined and normalized. Second, the decision
labels computed in Step 3 are added to the last dimension of
the training sample. After that, the new training sample data
sets will be regarded as the input instance sets to construct the
RVM model.

Step 5: The meteorological feature data sets that need to be
forecasted can be input to the RVM model constructed by Step
4, which then outputs the fluctuation of forecast z.

Step 6: By a combination of the trend forecast and fluctuation
forecast, the final result can be obtained.

5. Experiment and Results

This experiment concerns the yield forecast for winter wheat
in Anhui province in China. Three districts are sampled to test
the GM-RVM model based on quotient space theory presented
in this paper, and the predicted years range from 1996 to 2000.
The meteorological time series ranges from 1980 to 2000, after
the combination with feature data sets obtained by the space
quotient granular analysis and the decision label produced by
the grey model. The total number of instances is 200, and the
number of dimensions in each sample is 90.

In this experiment, a Gaussian kernel is chosen as the kernel
function for RVM:

K(x, xi) = exp

{
−‖x− xi‖

2

2σ2

}
.

As shown in Figures 2-4, the relative error of the forecast is from
three different models, including the grey model (GM(1,1)), the
GM-Markov model, which is the combination of GM(1,1) and
the Markov model, and our GM-RVM based on quotient space
theory. The GM-Markov model is similar to our model and
also separates the yield prediction into two parts, including a
trend prediction part, for which a grey model can be used, and
a fluctuation prediction part, for which a Markov model can
work. The relative error can be defined as the absolute error
divided by the actual value.

As we can see from Figures 2-4, the forecast relative error
for our model is relatively smaller than that of other models in
most cases. Especially in 2000, the average relative error of
GM(1,1) is above 15%, the error of the GM-Markov model is
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Table 1. Average relative error for prediction in three districts with
three models

1996 1997 1998 1999 2000

GM(1,1) -7.6% 9.13% 8.13% -17.2% 17.5%

GM-Markov -6.17% 7.6% 10.1% -9.93% 10.4%

GM-RVM -4.13% 6.67% 6.33% -7.73% 6.3%

Figure 2. Relative error for GM-RVM, GM(1,1) and GM-Markov
models in district 1.

Figure 3. Relative error for GM-RVM, GM(1,1) and GM-Markov
models in district 2.

above 10%, but the error of the GM-RVM is only 6.3%. Thus,
the GM-RVM can improve the prediction performance. The
average forecast error is shown in Table 1.

The results in Table 1 show that by using the model intro-
duced in this paper, the forecast precision can be improved
by a combination of the grey model and an RVM algorithm,
compared with the other two models.

In order to discover if the granularity factor is important for
the improvement of precision or whether a suitable grain size
is chosen is important, the prediction of our model with mixed

Figure 4. Relative error for GM-RVM, GM(1,1) and GM-Markov
models in district 3.

Table 2. Yield forecast comparison in 2000 between mixed granular-
ity and month granularity

Grain-size Training
number

Testing
number

Relative
error

Mixed 190 10 6.3%

Month 190 10 9.1%

granularity by quotient space analysis is compared with this
model only using the coarse grain size of one month, which is
shown in Table 2.

Table 2 shows the average relative forecast error in three dis-
tricts using the model introduced in this paper with mixed and
single-month grain sizes. The results show that the prediction
performance can be improved by a combination of different
granularities with quotient space theory, compared with only
using a single-month granularity.

6. Conclusion

For the meteorological data sets, under the framework of the
quotient space granular computing model, complicated infor-
mation of meteorological time series is analyzed at different
grain sizes. A model that combines a grey model (GM(1, 1))
and an RVM algorithm is introduced for meteorological data
mining (yield forecast). Experiments on real-world data sets
using this model show that this is an efficient way to obtain
structural knowledge with granular analysis.

On the other hand, in a general situation, data sets associ-
ated with crop yield are limited and incomplete, and this is the
bottleneck that restricts research for prediction and pattern reor-
ganization in this area, which is also a cause for prediction error.
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Consequently, how to deal with data mining in incomplete data
sets efficiently is a direction that should be discussed in the
future [13].
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