• Title/Summary/Keyword: Vector analysis

Search Result 3,506, Processing Time 0.035 seconds

ESTIMATION OF THE POWER PEAKING FACTOR IN A NUCLEAR REACTOR USING SUPPORT VECTOR MACHINES AND UNCERTAINTY ANALYSIS

  • Bae, In-Ho;Na, Man-Gyun;Lee, Yoon-Joon;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.41 no.9
    • /
    • pp.1181-1190
    • /
    • 2009
  • Knowing more about the Local Power Density (LPD) at the hottest part of a nuclear reactor core can provide more important information than knowledge of the LPD at any other position. The LPD at the hottest part needs to be estimated accurately in order to prevent the fuel rod from melting in a nuclear reactor. Support Vector Machines (SVMs) have successfully been applied in classification and regression problems. Therefore, in this paper, the power peaking factor, which is defined as the highest LPD to the average power density in a reactor core, was estimated by SVMs which use numerous measured signals of the reactor coolant system. The SVM models were developed by using a training data set and validated by an independent test data set. The SVM models' uncertainty was analyzed by using 100 sampled training data sets and verification data sets. The prediction intervals were very small, which means that the predicted values were very accurate. The predicted values were then applied to the first fuel cycle of the Yonggwang Nuclear Power Plant Unit 3. The root mean squared error was approximately 0.15%, which is accurate enough for use in LPD monitoring and for core protection that uses LPD estimation.

Support vector ensemble for incipient fault diagnosis in nuclear plant components

  • Ayodeji, Abiodun;Liu, Yong-kuo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1306-1313
    • /
    • 2018
  • The randomness and incipient nature of certain faults in reactor systems warrant a robust and dynamic detection mechanism. Existing models and methods for fault diagnosis using different mathematical/statistical inferences lack incipient and novel faults detection capability. To this end, we propose a fault diagnosis method that utilizes the flexibility of data-driven Support Vector Machine (SVM) for component-level fault diagnosis. The technique integrates separately-built, separately-trained, specialized SVM modules capable of component-level fault diagnosis into a coherent intelligent system, with each SVM module monitoring sub-units of the reactor coolant system. To evaluate the model, marginal faults selected from the failure mode and effect analysis (FMEA) are simulated in the steam generator and pressure boundary of the Chinese CNP300 PWR (Qinshan I NPP) reactor coolant system, using a best-estimate thermal-hydraulic code, RELAP5/SCDAP Mod4.0. Multiclass SVM model is trained with component level parameters that represent the steady state and selected faults in the components. For optimization purposes, we considered and compared the performances of different multiclass models in MATLAB, using different coding matrices, as well as different kernel functions on the representative data derived from the simulation of Qinshan I NPP. An optimum predictive model - the Error Correcting Output Code (ECOC) with TenaryComplete coding matrix - was obtained from experiments, and utilized to diagnose the incipient faults. Some of the important diagnostic results and heuristic model evaluation methods are presented in this paper.

Ready-Made Garments (RMG) Export Earnings and Economic Development of Bangladesh: Empirical Analysis Using Vector Error Correction Model

  • JIBAN, Abul Jannat;BISWAS, Gautam Kumar;YANG, Shaohua
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.10
    • /
    • pp.29-38
    • /
    • 2022
  • Ready-made Garments (RMG) export earnings, which are almost 80% of the total exports of Bangladesh, have been recognized as one of the main catalysts for the recent development of the country. Therefore, the need to determine whether the RMG export had served as a mechanism for increasing the GDP growth as well as the economic development of the country is topical and pressing. We have applied the Johansen Co-integration test and Vector Error Correction Model (VECM) to reveal the linkage of RMG export earnings and other variables with the GDP growth rate in Bangladesh. Using data from 1990 to 2020 for Bangladesh, we have found long-run as well as short-run associations among RMG Export earnings, Foreign Direct Investment (FDI), and GDP growth. A co-integration among the variables is validated through the Johansen Co-integration test. Moreover, a causal correlation running from RMG export earnings to GDP was revealed by the Granger causality test in the long run. Finally, we estimated impulse response functions to observe the variations of model variables in response to a shock. Our result supports the proposition that RMG export earnings are one of the main growth engines in Bangladesh and this sector leads growth in other sectors also in the long term.

A Comparative Study Between Linear Regression and Support Vector Regression Model Based on Environmental Factors of a Smart Bee Farm

  • Rahman, A. B. M. Salman;Lee, MyeongBae;Venkatesan, Saravanakumar;Lim, JongHyun;Shin, ChangSun
    • Smart Media Journal
    • /
    • v.11 no.5
    • /
    • pp.38-47
    • /
    • 2022
  • Honey is one of the most significant ingredients in conventional food production in different regions of the world. Honey is commonly used as an ingredient in ethnic food. Beekeeping is performed in various locations as part of the local food culture and an occupation related to pollinator production. It is important to conduct beekeeping so that it generates food culture and helps regulate the regional environment in an integrated manner in preserving and improving local food culture. This study analyzes different types of environmental factors of a smart bee farm. The major goal of this study is to determine the best prediction model between the linear regression model (LM) and the support vector regression model (SVR) based on the environmental factors of a smart bee farm. The performance of prediction models is measured by R2 value, root mean squared error (RMSE), and mean absolute error (MAE). From all analysis reports, the best prediction model is the support vector regression model (SVR) with a low coefficient of variation, and the R2 values for Farm inside temperature, bee box inside temperature, and Farm inside humidity are 0.97, 0.96, and 0.44.

Credit Risk Evaluations of Online Retail Enterprises Using Support Vector Machines Ensemble: An Empirical Study from China

  • LI, Xin;XIA, Han
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.8
    • /
    • pp.89-97
    • /
    • 2022
  • The e-commerce market faces significant credit risks due to the complexity of the industry and information asymmetries. Therefore, credit risk has started to stymie the growth of e-commerce. However, there is no reliable system for evaluating the creditworthiness of e-commerce companies. Therefore, this paper constructs a credit risk evaluation index system that comprehensively considers the online and offline behavior of online retail enterprises, including 15 indicators that reflect online credit risk and 15 indicators that reflect offline credit risk. This paper establishes an integration method based on a fuzzy integral support vector machine, which takes the factor analysis results of the credit risk evaluation index system of online retail enterprises as the input and the credit risk evaluation results of online retail enterprises as the output. The classification results of each sub-classifier and the importance of each sub-classifier decision to the final decision have been taken into account in this method. Select the sample data of 1500 online retail loan customers from a bank to test the model. The empirical results demonstrate that the proposed method outperforms a single SVM and traditional SVMs aggregation technique via majority voting in terms of classification accuracy, which provides a basis for banks to establish a reliable evaluation system.

Application of an Optimized Support Vector Regression Algorithm in Short-Term Traffic Flow Prediction

  • Ruibo, Ai;Cheng, Li;Na, Li
    • Journal of Information Processing Systems
    • /
    • v.18 no.6
    • /
    • pp.719-728
    • /
    • 2022
  • The prediction of short-term traffic flow is the theoretical basis of intelligent transportation as well as the key technology in traffic flow induction systems. The research on short-term traffic flow prediction has showed the considerable social value. At present, the support vector regression (SVR) intelligent prediction model that is suitable for small samples has been applied in this domain. Aiming at parameter selection difficulty and prediction accuracy improvement, the artificial bee colony (ABC) is adopted in optimizing SVR parameters, which is referred to as the ABC-SVR algorithm in the paper. The simulation experiments are carried out by comparing the ABC-SVR algorithm with SVR algorithm, and the feasibility of the proposed ABC-SVR algorithm is verified by result analysis. Continuously, the simulation experiments are carried out by comparing the ABC-SVR algorithm with particle swarm optimization SVR (PSO-SVR) algorithm and genetic optimization SVR (GA-SVR) algorithm, and a better optimization effect has been attained by simulation experiments and verified by statistical test. Simultaneously, the simulation experiments are carried out by comparing the ABC-SVR algorithm and wavelet neural network time series (WNN-TS) algorithm, and the prediction accuracy of the proposed ABC-SVR algorithm is improved and satisfactory prediction effects have been obtained.

Neural network based direct torque control for doubly fed induction generator fed wind energy systems

  • Aftab Ahmed Ansari;Giribabu Dyanamina
    • Advances in Computational Design
    • /
    • v.8 no.3
    • /
    • pp.237-253
    • /
    • 2023
  • Torque ripple content and variable switching frequency operation of conventional direct torque control (DTC) are reduced by the integration of space vector modulation (SVM) into DTC. Integration of space vector modulation to conventional direct torque control known as SVM-DTC. It had been more frequently used method in renewable energy and machine drive systems. In this paper, SVM-DTC is used to control the rotor side converter (RSC) of a wind driven doubly-fed induction generator (DFIG) because of its advantages such as reduction of torque ripples and constant switching frequency operation. However, flux and torque ripples are still dominant due to distorted current waveforms at different operations of the wind turbine. Therefore, to smoothen the torque profile a Neural Network Controller (NNC) based SVM-DTC has been proposed by replacing the PI controller in the speed control loop of the wind turbine controller. Also, stability analysis and simulation study of DFIG using process reaction curve method (RRCM) are presented. Validation of simulation study in MATLAB/SIMULINK environment of proposed wind driven DFIG system has been performed by laboratory developed prototype model. The proposed NNC based SVM-DTC yields superior torque response and ripple reduction compared to other methods.

Support Vector Regression based on Immune Algorithm for Software Cost Estimation (소프트웨어 비용산정을 위한 면역 알고리즘 기반의 서포트 벡터 회귀)

  • Kwon, Ki-Tae;Lee, Joon-Gil
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.7
    • /
    • pp.17-24
    • /
    • 2009
  • Increasing use of information system has led to larger amount of developing expenses and demands on software. Until recent days, the model using regression analysis based on statistical algorithm has been used. However, Machine learning is more investigated now. This paper estimates the software cost using SVR(Support Vector Regression). a sort of machine learning technique. Also, it finds the best set of parameters applying immune algorithm. In this paper, software cost estimation is performed by SVR based on immune algorithm while changing populations, memory cells, and number of allele. Finally, this paper analyzes and compares the result with existing other machine learning methods.

Recovery of 3-D Motion from Time-Varying Image Flows

  • Wohn, Kwang-Yun;Jung, Soon-Ki
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.2
    • /
    • pp.77-86
    • /
    • 1996
  • In this paper we deal with the problem of recovering 3-D motion and structure from a time-varying 2-D velocity vector field. A great deal has been done on this topic, most of which has concentrated on finding necessary and sufficient conditions for there to be a unique 3-D solution corresponding to a given 2-D motion. While previous work provides useful theoretical insight, in most situations the known algorithms have turned out to be too sensitive to be of much practical use. It appears that any robust algorithm must improve the 3-D solutions over time. As a step toward such algorithm, we present a method for recovering 3-D motion and structure from a given time-varying 2-D velocity vector field. The surface of the object in the scene is assumed to be locally planar. It is also assumed that 3-D velocity vectors are piecewise constant over three consecutive frames (or two snapshots of flow field). Our formulation relates 3-D motion and object geometry with the optical flow vector as well as its spatial and temporal derivatives. The linearization parameters, or equivalently, the first-order flow approximation (in space and time) is sufficient to recover rigid body motion and local surface structure from the local instantaneous flow field. We also demonstrate, through a sensitivity analysis carried out for synthetic and natural motions in space, that 3-D motion can be recovered reliably.

  • PDF

Estimating Hydrodynamic Coefficients of Real Ships Using AIS Data and Support Vector Regression

  • Hoang Thien Vu;Jongyeol Park;Hyeon Kyu Yoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.198-204
    • /
    • 2023
  • In response to the complexity and time demands of conventional methods for estimating the hydrodynamic coefficients, this study aims to revolutionize ship maneuvering analysis by utilizing automatic identification system (AIS) data and the Support Vector Regression (SVR) algorithm. The AIS data were collected and processed to remove outliers and impute missing values. The rate of turn (ROT), speed over ground (SOG), course over ground (COG) and heading (HDG) in AIS data were used to calculate the rudder angle and ship velocity components, which were then used as training data for a regression model. The accuracy and efficiency of the algorithm were validated by comparing SVR-based estimated hydrodynamic coefficients and the original hydrodynamic coefficients of the Mariner class vessel. The validated SVR algorithm was then applied to estimate the hydrodynamic coefficients for real ships using AIS data. The turning circle test wassimulated from calculated hydrodynamic coefficients and compared with the AIS data. The research results demonstrate the effectiveness of the SVR model in accurately estimating the hydrodynamic coefficients from the AIS data. In conclusion, this study proposes the viability of employing SVR model and AIS data for accurately estimating the hydrodynamic coefficients. It offers a practical approach to ship maneuvering prediction and control in the maritime industry.