• Title/Summary/Keyword: Vector Potential

Search Result 632, Processing Time 0.027 seconds

Geographical Distribution and Relative Abundance of Vectors of Scrub Typhus in the Republic of Korea

  • Lee, In-Yong;Kim, Heung-Chul;Lee, Young-Sun;Seo, Jang-Hoon;Lim, Jae-Won;Yong, Tae-Soon;Klein, Terry A.;Lee, Won-Ja
    • Parasites, Hosts and Diseases
    • /
    • v.47 no.4
    • /
    • pp.381-386
    • /
    • 2009
  • A survey to determine the geographical distribution and relative abundance of potential vectors of scrub typhus was conducted from October to November 2006 at 13 localities throughout the Republic of Korea. Apodemus agrarius accounted for 97.6% (80/82) of all rodents, while only 2 Myodes regulus (2/82) were collected. A total of 10,860 chiggers were collected from A. agrarius belonging to 4 genera and 8 species, while only Walehia fragilis (40) was collected from Myodes regulus. Leptotrombidium pallidum (8,137; 74.9%), a vector of scrub typhus, was the predominant species collected from A. agrarius followed by Leptotrombidium scutellare (2,057, 18.9%), Leptotrombidium palpale (279; 2.7%), Leptotrombidium orientale (232; 2.1%), and Leptotrombidium zetum (79; 0.7%), Neotrombicula tamiyai (58; 0.5%), Euschoengastica koreaensis (16; 0.1%), and Cheladonta ikaoensis (2; < 0.1 %). L. pallidum was the predominant chigger collected at collection sites in Gangwon (100%), Gyeonggi (87.2%), Chungnam (100%), Chungbuk (100%), Jeonbuk (73.9%), Jeonnam (77.0%), and Gyeongbuk (66.1%) provinces, whereas L. scutellare was the predominant chigger collected in Gyeongnam province (77.9%) and Jeju Island (62.3%). Data suggest a correlation between chigger population abundance and human cases of scrub typhus in Korea.

Wall charge effects on structural properties of a coarse-grained FENE polyelectrolyte confined in slit nanochannels by Brownian dynamics simulation

  • Jeon, Jong-Gu;Chun, Myung-Suk
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.2
    • /
    • pp.51-59
    • /
    • 2007
  • A polyelectrolyte chain confined in a slit nanochannel exhibits a structural transition from the one in free space. In this paper, the effect of the long-range electrostatic interactions between the xanthan polyelectrolyte and the slit wall on the confined xanthan conformation is investigated via the Brownian dynamics simulation. A neutral and two negatively charged surfaces of polydimethylsiloxane (PDMS) and glass are combined to make four kinds of slit channels with different charge characteristics: i) neutral-neutral, ii) glass-glass, iii) neutral-PDMS and iv) neutral-glass walls. Their walls are characterized by uniform surface charge densities determined from experimental data of zeta potential. Both the nonmonotonic chain size variation and the loss of long-range bond vector correlation, previously observed under confinement in the PDMS-PDMS slit, are also found in the neutral slit, demonstrating the nonelectrostatic origin of such crossover behaviors. As expected, the effect of wall charges is negligible at sufficiently high medium ionic strength of 100mM but it becomes significant in the opposite limit of 0.01mM. In the latter case, the high charge density of glass walls strengthens the effective confinement of a negatively charged polyelectrolyte and produces a xanthan structure comparable to that confined in a much narrower neutral slit. The obtained structural data suggest the possibility of controlling the structure of confined polyelectrolytes by the modification of surface charge characteristics of micro/nanofluidic devices in combination with the adjustment of the medium ionic strength.

Recent Studies of Edible Plant Vaccine for Prophylactic Medicine against Virus-mediated Diseases (바이러스 질병 예방을 위한 식물 경구 백신 연구 동향)

  • Hahn, Bum-Soo;Park, Jong-Sug;Kim, Hyeong-Kuk;Ha, Sun-Hwa;Cho, Kang-Jin;Kim, Yong-Hwan;Kim, Jong-Bum
    • Journal of Plant Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.151-161
    • /
    • 2004
  • Transgenic plants have been studied as delivery system for edible vaccine against various diseases. Edible plant vaccines have several potential advantages as follows: an inexpensive source of antigen, easy administration, reduced need for medical personnel, economical to mass produce and easy transport, heat-stable vaccine without refrigerator, generation of systemic and mucosal immunity and safe antigen without fetal animal-virus contaminants. The amount of recombinant antigens in transgenic plants ranged from 0.002 to 0.8% in total soluble protein, depending on promoters for the expression of interested genes and plants to be used for transformation. Throughout the last decade, edible plant vaccine made notable progresses that protect from challenges against virus or bacteria. However edible plant vaccines have still problems that could be solved. First, the strong promoter or inducible promoter or strategy of protein targeting could be solved to improve the low expression of antigens in transgenic plants. Second, the transformation technique of target plant should be developed to be able to eat uncooked. Third, marker-free vector could be constructed to be more safety. In this review we describe advances of edible plant vaccines, focusing on the yields depending on plants/promoters employed and the results of animal/clinical trials, and consider further research for the development of a new plant-derived vaccine.

Expression and Purification of Mutated Porcine Growth Hormone Binding Protein by Using Site-Directed Mutagenesis in E. coli (Site-Directed Mutagenesis를 이용하여 변이된 돼지 성장 호르몬 결합 단백질의 대장균 내 발현과 정제)

  • Choi, K.H.;Chung, K. S.;Lee, H.T.
    • Korean Journal of Animal Reproduction
    • /
    • v.25 no.4
    • /
    • pp.381-388
    • /
    • 2001
  • The present study was designed to obtain porcine growth hormone binding protein (pGHBP) improved biological activation as derived mutation in binding site with growth horlnone (GH). A 756 bp of fragment encoding the extracellular domain of pGHBP gene was cloned from the total RNA of porcine fat tissue by reverse transcriptase polymerase chain reaction (RT-PCR) and created mutation in positions 26 and 122 using site-directed mutagenesis method. Position 26 is one and it is near to get on five potential N-linked glycosylation sites located in the extracellular domain of porcine growth hormone receptor known to have a direct influence on combination with GH. Position 122 is known as one of conformational epitope in bovine. It was over-expressed in E. coli using pET-32(c) expression vector and precisely purified by S-protein agarose and enterokinase. In our results, we was obtained pmGHBP of 30 kDa. It suggests to study the effects of the pmGHBP on cell proliferation in vitro and growth rate in vivo after administration.

  • PDF

Inhibition of Oligomycin Biosynthesis by olmA5 Gene Knock-out in Streptomyces avermitilis (Streptomyces avermitilis에서 olmA5 Gene의 Knock-out에 의한 Oligomycin 합성 억제)

  • Kang, Hyun-Woo;Ryu, Yeon-Woo
    • KSBB Journal
    • /
    • v.24 no.3
    • /
    • pp.279-286
    • /
    • 2009
  • Streptomyces is well known for their ability to synthesize enormous varieties of antibiotics as secondary metabolites. Among them, S. avermitilis produces avermectins, a group of antiparasitic agents used in human and veterinary medicine. However, S. avermitilis also produces oligomycin, which is a potential toxic inhibitor of oxidative phosphorylation in mammalian cells. Therefore, we decided to disrupt oligomycin synthetase gene to prevent co-production of oligomycin in S. avermitilis. To create plasmid for disruption, the smallest gene of oligomycin synthetase gene cluster was obtained by PCR from S. avermitilis chromosome. Then, apramycin resistance gene was inserted in oligomycin synthetase gene for selection. After transformation of this plasmid, oligomycin synthetase gene (olmA5) in the chromosome was displaced with disruption cassette on the plasmid via homologous recombination. As a result of this gene replacement, we obtained mutants (olmA5::apra) that no longer makes the toxic oligomycin. And the mutants confirmed by PCR and HPLC analysis. However, showed no increasement of avermectin production in the mutant was observed.

A Model for Simplified 3-dimensional Analysis of High-speed Train Vehicle (TGV)-Bridge Interactions (고속철도차량(TGV)-교량 상호작용의 단순화된 3차원 해석모델)

  • 최창근;송명관;양신추
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.165-178
    • /
    • 2000
  • The simplified model for 3-dimensional analysis of vehicle-bridge interactions is presented in this study. By using the analysis model which includes the eccentricity of axle loads and the effect of the torsional forces acting on the bridge, the more accurate analysis results of the behavior of the bridge can be obtained. The equations of kinetic energy, potential energy and damping energy are expressed by degrees of freedom of the vehicle and the bridge. And then by applying Lagrange's equations of motion, the equations of motion of the vehicle and the bridge are obtained. By deriving the equations of forces acting on the bridge considering the vehicle-bridge vertical interactions and also by identifying the position of vehicle as time goes by, mass matrix, stiffness matrix, damping matrix and load vector of vehicle-bridge system are constructed in accordance with the position of vehicles. Then using Newmark's β-method(average acceleration), the equations of motion for the total vehicle bridge system are solved.

  • PDF

Dynamic Characteristics Analysis Considering the Effect of the Vortexes of Flux in a LIM for Railway Propulsion System (맴돌이 자속의 영향을 고려한 철도추진용 선형유도전동기의 동특성 연구)

  • Park, Chan-Bae;Lee, Byung-Song;Lee, Ju
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.3
    • /
    • pp.437-442
    • /
    • 2009
  • In the case of a Linear Induction Motor (LIM), numerical analysis method like Finite Element Method (FEM) has been mainly used to analyze the travelling magnetic field problem which includes the velocity-induced electromotive force. If the problem including the velocity-induced electromotive force is analyzed by FEM using the Galerkin method, the solution can be oscillated according to the Peclet Number, which is determined by conductivity, permeability, moving velocity and size of mesh. Consequently, the accuracy of the solution can be low and the vortexes of flux can be occurred at the secondary back-iron. These vortexes of the flux occurred at the secondary back-iron does not exist physically, but it can be occurred in the analysis. In this case, the vortexes of the flux can be generally removed by using Up-Wind method which is impossible to apply a conventional S/W tool (Maxwell 2D). Therefore, in this paper, authors examined the vortexes of the flux occurred at the secondary back-iron of the LIM according to variations of the Peclet Number, and analyzed whether these vortexes of the flux affect on the dynamic force characteristics of the LIM or not.

High-Level Production of Human Papillomavirus (HPV) Type 16 L1 in Escherichia coli

  • Bang, Hyun Bae;Lee, Yoon Hyeok;Lee, Yong Jae;Jeong, Ki Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.356-363
    • /
    • 2016
  • Human papillomavirus (HPV), a non-enveloped, double-stranded DNA tumor virus, is a primary etiological agent of cervical cancer development. As a potential tool for prophylactic vaccination, the development of virus-like particles (VLPs) containing the HPV16 L1 capsid protein is highly desired. In this study, we developed a high-level expression system of the HPV16 L1 in Escherichia coli for the purpose of VLP development. The native gene of HPV16 L1 has many rare codons that cause the early termination of translation and result in the production of truncated forms. First, we optimized the codon of the HPV16 L1 gene to the preferable codons of E. coli, and we succeeded in producing the full-size HPV16 L1 protein without early termination. Next, to find the best host for the production of HPV16 L1, we examined a total of eight E. coli strains, and E. coli BL21(DE3) with the highest yield among the strains was selected. With the selected host-vector system, we did a fed-batch cultivation in a lab-scale bioreactor. Two different feeding solutions (complex and defined feeding solutions) were examined and, when the complex feeding solution was used, a 6-fold higher production yield (4.6 g/l) was obtained compared with that with the defined feeding solution.

Construction and Preliminary Immunobiological Characterization of a Novel, Non-Reverting, Intranasal Live Attenuated Whooping Cough Vaccine Candidate

  • Cornford-Nairns, R.;Daggard, G.;Mukkur, T.
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.856-865
    • /
    • 2012
  • We describe the construction and immunobiological properties of a novel whooping cough vaccine candidate, in which the aroQ gene, encoding 3-dehydroquinase, was deleted by insertional inactivation using the kanamycin resistance gene cassette and allelic exchange using a Bordetella suicide vector. The aroQ B. pertussis mutant required supplementation of media to grow but failed to grow on an unsupplemented medium. The aroQ B. pertussis mutant was undetectable in the trachea and lungs of mice at days 6 and 12 post-infection, respectively. Antigen-specific antibody isotypes IgG1 and IgG2a, were produced, and cell-mediated immunity [CMI], using interleukin-2 and interferon-gamma as indirect indicators, was induced in mice vaccinated with the aroQ B. pertussis vaccine candidate, which were substantially enhanced upon second exposure to virulent B. pertussis. Interleukin-12 was also produced in the aroQ B. pertussis-vaccinated mice. On the other hand, neither IgG2a nor CMI-indicator cytokines were produced in DTaP-vaccinated mice, although the CMI-indicator cytokines became detectable post-challenge with virulent B. pertussis. Intranasal immunization with one dose of the aroQ B. pertussis mutant protected vaccinated mice against an intranasal challenge infection, with no pathogen being detected in the lungs of immunized mice by day 7 post-challenge. B. pertussis aroQ thus constitutes a safe, non-reverting, metabolite-deficient vaccine candidate that induces both humoral and cell-mediated immune responses with potential for use as a single-dose vaccine in adolescents and adults, in the first instance, with a view to disrupting the transmission cycle of whooping cough to infants and the community.

Mucosal Immunization with Recombinant Adenovirus Encoding Soluble Globular Head of Hemagglutinin Protects Mice Against Lethal Influenza Virus Infection

  • Kim, Joo Young;Choi, Youngjoo;Nguyen, Huan H.;Song, Man Ki;Chang, Jun
    • IMMUNE NETWORK
    • /
    • v.13 no.6
    • /
    • pp.275-282
    • /
    • 2013
  • Influenza virus is one of the major sources of respiratory tract infection. Due to antigenic drift in surface glycoproteins the virus causes annual epidemics with severe morbidity and mortality. Although hemagglutinin (HA) is one of the highly variable surface glycoproteins of the influenza virus, it remains the most attractive target for vaccine development against seasonal influenza infection because antibodies generated against HA provide virus neutralization and subsequent protection against the virus infection. Combination of recombinant adenovirus (rAd) vector-based vaccine and mucosal administration is a promising regimen for safe and effective vaccination against influenza. In this study, we constructed rAd encoding the globular head region of HA from A/Puerto Rico/8/34 virus as vaccine candidate. The rAd vaccine was engineered to express high level of the protein in secreted form. Intranasal or sublingual immunization of mice with the rAd-based vaccine candidates induced significant levels of sustained HA-specific mucosal IgA and IgG. When challenged with lethal dose of homologous virus, the vaccinated mice were completely protected from the infection. The results demonstrate that intranasal or sublingual vaccination with HA-encoding rAd elicits protective immunity against infection with homologous influenza virus. This finding underlines the potential of our recombinant adenovirus-based influenza vaccine candidate for both efficacy and rapid production.