We consider the object recognition of industrial tools which have one degree of freedom. In the case of pliers, the shape varies as the jaw angle varies. Thus, a feature vector made from the boundary image also varies along with the jaw angle. But a pattern recognizer should have the ability of classifying objects without any regards to the angle variation. For a pattern recognizer we have utilized a backpropagation neural net. Feature vectors were made from Fourier descriptors of boundary images by truncating the high frequency components, and they were used as inputs to the neural net for training and recognition. In our experiments, backpropagation neural net outperforms the minimum distance rule which is widely used in the pattern recognition. The performance comparison also made under noisy environments.
In this paper, had known weighing machine from the urine weight measuring, nonflexible net type resistant installed on uroflowmetry measures of occured uroflow from the origin voided flow vector force and detrusor action related to gain newly form's uroflowmetry embodied and than, whether clinical application took usefulness assessment.
최근 인공지능 스피커 시장이 성장하면서 사용자와 자연스러운 대화가 가능한 음성합성 기술에 대한 수요가 증가하고 있다. 따라서 다양한 음색의 목소리를 생성할 수 있는 다화자 음성합성 시스템이 필요하다. 자연스러운 음성을 합성하기 위해서는 대용량의 고품질 음성 DB로 학습하는 것이 요구된다. 그러나 많은 화자가 발화한 고품질의 대용량 음성 DB를 수집하는 것은 녹음 시간과 비용 측면에서 매우 어려운 일이다. 따라서 각 화자별로는 소량의 학습 데이터이지만 매우 많은 화자의 음성 DB를 사용하여 음성합성 시스템을 학습하고, 이로부터 다화자의 음색과 운율 등을 자연스럽게 표현하는 기술이 필요하다. 본 논문에서는 화자인식 기술에서 사용하는 딥러닝 기반 x-vector 기법을 적용하여 화자 인코더를 구성하고, 화자 인코더를 통해 소량의 데이터로 새로운 화자의 음색을 합성하는 기술을 제안한다. 다화자 음성합성 시스템에서 텍스트 입력에서 멜-스펙트로그램을 합성하는 모듈은 Tacotron2로, 합성음을 생성하는 보코더는 로지스틱 혼합 분포가 적용된 WaveNet으로 구성되어 있다. 학습된 화자 임베딩 신경망에서 추출한 x-vector를 Tacotron2에 입력으로 추가하여 원하는 화자의 음색을 표현한다.
In this paper a new technique of inverse fairing problem for ship hull is proposed. Recently Lu solved the inverse fairing problem for automobile's body that was made by one surface element. In this system however hull surface is constructed by Gregory's composite surface interpolation method. So reflection line at boundary position is used as a tool of solving inverse problem in surface fairing. But the results are not good. The new concepts of Normal vector line and Constrained reflection line are introduced as an alternative tool. Energy minimization method for Normal Vector Line curve net and the inverse method for Constrained Reflection Line by using optimization technique are examined And the final lines from this proposed surface fairing method shows good fairness.
International Journal of Computer Science & Network Security
/
제21권6호
/
pp.1-6
/
2021
Recently, pre-trained convolutional neural network CNNs have been widely used and applied for medical image classification. These models can utilised in three different ways, for feature extraction, to use the architecture of the pre-trained model and to train some layers while freezing others. In this study, the ResNet18 pre-trained CNNs model is used for feature extraction, followed by the support vector machine for multiple classes to classify medical images from multi-classes, which is used as the main classifier. Our proposed classification method was implemented on Kvasir and PH2 medical image datasets. The overall accuracy was 93.38% and 91.67% for Kvasir and PH2 datasets, respectively. The classification results and performance of our proposed method outperformed some of the related similar methods in this area of study.
This paper proposes a new call admission control scheme utilizing an inverse fuzzy vector quantizer(IFVQ) and neural net, which combines benefits of IFVQ and flexibilities of FCM(Fuzzy-C-Menas) arithmatics, to decide whether a requested call that is not trained in learning phase to be connected or not. The system generates the estimated traffic pattern of the cell stream of a new call, using feasible/infeasible patterns in codebook, fuzzy membership values that represent the degree to which each pattern of codebook matches input pattern, and FCM arithmatics. The input to the NN is the vector consisted of traffic parameters which is the means and variances of the number of cells arriving inthe interval. After training(using error back propagation algorithm), when the NN is used for decision making, the decision as to whether to accept or reject a new call depends on whether the output is greater or less then decision threshold(+0.5). This method is a new technique for call admi sion control using the membership values as traffic parameter which declared to CAC at the call set up stage, and is valid for a very general traffic model in which the calls of a stream can belong to an unlimited number of traffic classes. Through the simmulation. it is founded the performance of the suggested method outforms compared to the conventional NN method.
탄성파 탐사를 수행할 때 경제적, 환경적 제약 또는 탐사 장비의 문제 등에 의해 탄성파 자료의 일부가 규칙적 또는 불규칙적으로 손실되는 경우가 발생하게 된다. 이러한 자료 손실은 탄성파 자료 처리와 해석 결과에 부정적인 영향을 주기 때문에 사라진 탄성파 자료를 복원할 필요가 있다. 탄성파 자료 복원을 위해 재탐사 또는 추가적인 탐사를 진행하는 경우 시간적, 경제적 비용이 발생하기 때문에, 많은 연구자들이 사라진 탄성파 자료를 정확히 복원하기 위한 보간 기법 연구를 진행해왔다. 최근에는 머신러닝 기술 발달에 따라 머신러닝 기법을 활용한 연구들이 진행되고 있고, 다양한 머신러닝 기술들 중에서도 서포트 벡터 회귀, 오토인코더, 유넷, 잔차넷, 생성적 적대 신경망 등의 알고리즘을 활용한 탄성파 자료의 보간 연구가 활발하게 진행되고 있다. 이 논문에서는 이러한 연구들을 조사하고 분석하여 복잡한 신경망 모델뿐 아니라 상대적으로 구조가 간단한 서포트 벡터 회귀 모델을 통해서도 뛰어난 보간 결과를 얻을 수 있다는 것을 확인했다. 추후 머신러닝 기법들을 사용하는 탄성파 자료 보간 연구들에서 오픈소스로 공개된 실제 자료를 이용하며 데이터 증식, 전이학습, 기존 기법을 이용한 규제 등의 기술을 활용하면 탄성파 자료 보간 성능을 향상시킬 수 있을 것으로 기대된다.
본 논문에서는 균열을 감지 할 때 필요한 데이터를 생성할 수 있는 벡터 기반 증강 기법과 이를 학습할 수 있는 합성곱 인공신경망(Convolution Neural Networks, ConvNet) 기법을 제안한다. 균열을 빠르고 정확하게 감지하는 것은 건물 붕괴와 낙하 사고를 사전에 방지할 수 있는 중요한 기술이다. 이 문제를 인공지능으로 해결하기 위해서는 대량의 데이터 확보가 필수적이지만, 실제 균열 이미지를 얻기 위한 상황은 대부분 위험하기 때문에 대량의 균열 데이터를 확보하기는 어렵다. 이런 데이터베이스 구축의 문제점은 인위적인 특정 부분에 변형을 주어 데이터의 양을 늘리는 탄성왜곡(Elastic distortion)으로 완화시킬 수 있지만, 본 논문에서는 이보다 향상된 균열 패턴 결과를 ConvNet을 활용하여 모델링한다. 탄성왜곡보다 우리의 방법이 실제 균열 패턴과 유사하게 추출된 결과를 얻을 수 있었고, 일반적인 데이터 증강에서 사용되는 픽셀 단위가 아닌, 벡터 기반으로 균열 데이터 증강을 설계함으로써 균열의 변화량 측면에서 우수한 결과를 얻을 수 있다. 결과적으로 본 논문에서는 적은 개수의 균열 데이터를 입력으로 사용했음에도 불구하고 균열의 방향 및 패턴을 다양하게 생성하여 효율적으로 균열 데이터베이스를 구축할 수 있다.
본 논문은 이기종 네트워크(heterogeneous networks: HetNet)를 위한 다중 셀 검출 방안을 제안한다. 이기종 네트워크에서 여러 셀을 동시에 검출 시 모든 셀로부터의 채널 정보를 획득하는 것은 어렵기 때문에 채널 정보를 필요로 하지 않는 비동기(non-coherent) 검출 방식이 선호된다. 본 논문에서는 가중치 벡터를 사용하는 비동기 기반 단일 셀 검출 기법을 제안하고, 이를 이용한 순차적 간섭 제거 기반 다중 셀 방안을 고안한다. 셀 검출 능력 향상을 위해 가중치 벡터는 무선 채널이 갖는 일반적 성질을 반영하여 설계되었다. 또한 제안된 단일 셀 검출 방안의 성능이 각 채널 환경별 최적 가중치 벡터 근처에서 둔감하게 변하는 성질을 바탕으로 다양한 채널 환경 및 신호 대 잡음비 영역에서 최적 성능에 근접한 universal 가중치 벡터도 제안되었다. 모의실험 결과 제안된 다중 셀 검출 방안은 향상된 단일 셀 검출 능력을 통해 기존 방식 대비 좀 더 정확히 셀을 검출할 수 있고, 검출된 셀로부터의 신호를 수신 신호에서 제거함으로써 나머지 셀을 효과적으로 검출할 수 있음을 확인하였다.
입도경향분석은 퇴적물 입도경향으로부터 퇴적물의 순이동방향을 도출하는 방법론이다. 입도경향으로부터 도출된 퇴적물의 순이동방향이 낙동강 하류의 삼각주연안 사주점의 지형변화 패턴과 잘 부합한다면 입도경향분석은 삼각주연안 사주섬의 지형변화를 연구하는 과정에서 효과적인 접근법이 될 수 있을 것이다. 이 연구는 Gao and Collins(1992)의 '퇴적물 이동벡터'법에 따라 도출한 퇴적물 순이동방향이 낙동강의 삼각주연안 사주섬의 지형변화를 이해하는 데 적절히 활용될 수 있는지를 검토한 것이다. 연구결과 퇴적물 이동벡터로부터 얻어진 퇴적물 순이동방향은 대체로 항공사진을 통해 추출한 지형변화 패턴를 반영하고 있음을 확인하였으나 지형변화가 급속히 일어나는 지역에서는 그렇지 않았다. 이는 입도경향분석을 통해 얻은 퇴적물 순이동방향이 대표하는 프로세스의 시간적 규모와 지형변화 분석자료의 시간적 규모, 지형변화율 등의 요소의 부합, 불부합 여부 등이 관련되어 있다고 판단된다. 입도경향분석을 낙동강 삼각주연안 사주섬에 적용하고자 할 경우 설명가능한 시간적 규모를 고려한 신중한 접근과 해석이 필요하다고 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.