• Title/Summary/Keyword: Vector Fit

Search Result 65, Processing Time 0.031 seconds

APPROXIMATE TANGENT VECTOR AND GEOMETRIC CUBIC HERMITE INTERPOLATION

  • Jeon, Myung-Jin
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.575-584
    • /
    • 2006
  • In this paper we introduce a discrete tangent vector of a polygon defined on each vertex by a linear combination of forward difference and backward difference, and show that if the polygon is originated from a smooth curve then direction of the discrete tangent vector is a second order approximation of the direction of the tangent vector of the original curve. Using this discrete tangent vector, we also introduced the geometric cubic Hermite interpolation of a polygon with controlled initial and terminal speed of the curve segments proportional to the edge length. In this case the whole interpolation is $C^1$. Experiments suggest that about $90\%$ of the edge length is the best fit for the initial and terminal speeds.

Function space formulation of the 3-noded distorted Timoshenko metric beam element

  • Manju, S.;Mukherjee, Somenath
    • Structural Engineering and Mechanics
    • /
    • v.69 no.6
    • /
    • pp.615-626
    • /
    • 2019
  • The 3-noded metric Timoshenko beam element with an offset of the internal node from the element centre is used here to demonstrate the best-fit paradigm using function space formulation under locking and mesh distortion. The best-fit paradigm follows from the projection theorem describing finite element analysis which shows that the stresses computed by the displacement finite element procedure are the best approximation of the true stresses at an element level as well as global level. In this paper, closed form best-fit solutions are arrived for the 3-noded Timoshenko beam element through function space formulation by combining field consistency requirements and distortion effects for the element modelled in metric Cartesian coordinates. It is demonstrated through projection theorems how lock-free best-fit solutions are arrived even under mesh distortion by using a consistent definition for the shear strain field. It is shown how the field consistency enforced finite element solution differ from the best-fit solution by an extraneous response resulting from an additional spurious force vector. However, it can be observed that when the extraneous forces vanish fortuitously, the field consistent solution coincides with the best-fit strain solution.

A Study on Speaker Identification Using Hybrid Neural Network (하이브리드 신경회로망을 이용한 화자인식에 관한 연구)

  • Shin, Chung-Ho;Shin, Dea-Kyu;Lee, Jea-Hyuk;Park, Sang-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.600-602
    • /
    • 1997
  • In this study, a hybrid neural net consisting of an Adaptive LVQ(ALVQ) algorithm and MLP is proposed to perform speaker identification task. ALVQ is a new learning procedure using adaptively feature vector sequence instead of only one feature vector in training codebooks initialized by LBG algorithm and the optimization criterion of this method is consistent with the speaker classification decision rule. ALVQ aims at providing a compressed, geometrically consistent data representation. It is fit to cover irregular data distributions and computes the distance of the input vector sequence from its nodes. On the other hand, MLP aim at a data representation to fit to discriminate patterns belonging to different classes. It has been shown that MLP nets can approximate Bayesian "optimal" classifiers with high precision, and their output values can be related a-posteriori class probabilities. The different characteristics of these neural models make it possible to devise hybrid neural net systems, consisting of classification modules based on these two different philosophies. The proposed method is compared with LBG algorithm, LVQ algorithm and MLP for performance.

  • PDF

LOCAL INFLUENCE ON THE GOODNESS-OF-FIT TEST STATISTIC IN MAXIMUM LIKELIHOOD FACTOR ANALYSIS

  • Jung, Kang-Mo
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.2
    • /
    • pp.489-498
    • /
    • 1998
  • The influence of observations the on the goodness-of-fit test in maximum likelihood factor analysis is investigated by using the local influence method. under an appropriate perturbation the test statistic forms a surface. One of main diagnostics is the maximum slope of the perturbed surface the other is the direction vector cor-responding to the curvature. These influence measures provide the information about jointly influence measures provide the information about jointly influential observations as well as individ-ually influential observations.

A Reliability Prediction Method for Weapon Systems using Support Vector Regression (지지벡터회귀분석을 이용한 무기체계 신뢰도 예측기법)

  • Na, Il-Yong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.675-682
    • /
    • 2013
  • Reliability analysis and prediction of next failure time is critical to sustain weapon systems, concerning scheduled maintenance, spare parts replacement and maintenance interventions, etc. Since 1981, many methodology derived from various probabilistic and statistical theories has been suggested to do that activity. Nowadays, many A.I. tools have been used to support these predictions. Support Vector Regression(SVR) is a nonlinear regression technique extended from support vector machine. SVR can fit data flexibly and it has a wide variety of applications. This paper utilizes SVM and SVR with combining time series to predict the next failure time based on historical failure data. A numerical case using failure data from the military equipment is presented to demonstrate the performance of the proposed approach. Finally, the proposed approach is proved meaningful to predict next failure point and to estimate instantaneous failure rate and MTBF.

Classification of Power Quality Disturbances Using Feature Vector Combination and Neural Networks (특징벡터 결합과 신경회로망을 이용한 전력외란 식별)

  • Nam, Sang-Won
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.671-674
    • /
    • 1997
  • The objective of this paper is to present a new feature-vector extraction method for the automatic detection and classification of power quality(PQ) disturbances, where FIT, DWT(Discrete Wavelet Transform), and Fisher's criterion are utilized to extract an appropriate feature vector. In particular, the proposed classifier consists of three parts: i.e., (i) automatic detection of PQ disturbances, where the wavelet transform and signal power estimation method are utilized to detect each disturbance, (ii) feature vector extraction from the detected disturbance, and (iii) automatic classification, where Multi-Layer Perceptron(MLP) is used to classify each disturbance from the corresponding extracted feature vector. To demonstrate the performance and applicability of the proposed classification algorithm, some test results obtained by analyzing 10-class power quality disturbances are also provided.

  • PDF

Fuzzy c-Regression Using Weighted LS-SVM

  • Hwang, Chang-Ha
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.161-169
    • /
    • 2005
  • In this paper we propose a fuzzy c-regression model based on weighted least squares support vector machine(LS-SVM), which can be used to detect outliers in the switching regression model while preserving simultaneous yielding the estimates of outputs together with a fuzzy c-partitions of data. It can be applied to the nonlinear regression which does not have an explicit form of the regression function. We illustrate the new algorithm with examples which indicate how it can be used to detect outliers and fit the mixed data to the nonlinear regression models.

  • PDF

Interpretations of Negative Degree Sentences and Questions

  • Kwak, Eun-Joo
    • Journal of English Language & Literature
    • /
    • v.56 no.6
    • /
    • pp.1135-1161
    • /
    • 2010
  • The interpretations of degree expressions require the postulation of new entities to represent degrees. Diverse entities such as degrees, intervals, and vectors are adopted for degree expressions. Positive degree sentences and questions are properly construed with the introduction of these entities, but their negative counterparts need more consideration. Negative degree sentences show dual patterns of entailments depending on contexts, and negative degree questions are unacceptable, making weak islands. To explicate the distinct nature of negative degree sentences and questions, Fox & Hackl (2006) provide an analysis based on degrees while Abrusan & Spector (2010) suggest a proposal in interval readings of degree expressions. I have pointed out the theoretical problems of these analyses and proposed an alternative in the framework of the vector space semantics, following Winter (2005). Bi-directional scales in vector space fit well with the dual patterns of negative degree sentences, and the notion of a reference vector is useful to accommodate the contextual influence in negative degree sentences and to deal with the unacceptability of negative degree questions.

The sparse vector autoregressive model for PM10 in Korea (희박 벡터자기상관회귀 모형을 이용한 한국의 미세먼지 분석)

  • Lee, Wonseok;Baek, Changryong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.4
    • /
    • pp.807-817
    • /
    • 2014
  • This paper considers multivariate time series modelling of PM10 data in Korea collected from 2008 to 2011. We consider both temporal and spatial dependencies of PM10 by applying the sparse vector autoregressive (sVAR) modelling proposed by Davis et al. (2013). It utilizes the partial spectral coherence to measure cross correlation between different regions, in turn provides the sparsity in the model while balancing the parsimony of model and the goodness of fit. It is also shown that sVAR performs better than usual vector autoregressive model (VAR) in forecasting.

Distributed Support Vector Machines for Localization on a Sensor Newtork (센서 네트워크에서 위치 측정을 위한 분산 지지 벡터 머신)

  • Moon, Sangook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.944-946
    • /
    • 2014
  • Localization of a sensor network node using machine learning has been recently studied. It is easy for Support vector machines algorithm to implement in high level language enabling parallelism. In this paper, we realized Support vector machine using python language and built a sensor network cluster with 5 Pi's. We also established a Hadoop software framework to employ MapReduce mechanism. We modified the existing Support vector machine algorithm to fit into the distributed hadoop architecture system for localization of a sensor node. In our experiment, we implemented the test sensor network with a variety of parameters and examined based on proficiency, resource evaluation, and processing time.

  • PDF