• 제목/요약/키워드: Vector Finite Element Method

검색결과 235건 처리시간 0.024초

하천흐름해석을 위한 상향가중의 3차원 유한요소모형 개발 (Development of Three-Dimensional Finite Element Model Using Upwind Weighting Scheme for River Flow)

  • 한건연;백창현;최승용
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회 논문집
    • /
    • pp.409-413
    • /
    • 2005
  • Even though the relative importance of length scale of flow system allow us to simplify three dimensional flow problem to one or two dimensional representation, many systems still require three dimensional analysis. The objective of this study is to develop an efficient and accurate finite element model for analyzing and predicting three dimensional flow features in natural rivers and to offend to model spreading of pollutants and transport of sediments in the future. Firstly, three dimensional Reynolds averaged Navier-Stokes equations with the hydrostatic pressure assumption in generalized curvilinear coordinates were combined with the kinematic free-surface condition. Secondly. to simulate realistic high Reynolds number flow, the model employed the Streamline Upwind/Petrov-Galerkin(SU/PG) scheme as a weighting function for the finite element method in conjunction with an appropriate turbulence model(Smagorinsky scheme for the horizontal plain and Mellor-Yamada scheme for the vertical direction). Several tests is performed for the purpose of validation and verification of the developed model. A simple rectangular channel, 5-shaped and U-shaped channel are used for tests and comparisons are made with RMA-10 model. Runs for each case is converged stably without a oscillation and calculated water-surface deformation, longitudinal and transversal velocities, and velocity vector fields are in good agreement with the results of RMA-10 model.

  • PDF

정적 및 동적 단부효과를 고려한 선형 유도 전동기의 벡터제어 특성해석 (The Characteristic Analysis of Vector Control in a Linear Induction Motor Considering Static and Dynamic End Effects)

  • 김대경;권병일;우경일
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권8호
    • /
    • pp.413-424
    • /
    • 2002
  • Recently, in the linear motion system, high performances are required In dynamic characteristics. Vector control method is capable of instantaneous thrust control can meet these high performance requirements. Linear induction motor(LIM) have static and dynamic end effects due to its finite core length, so that per-phase impedances are asymmetric and an air gap flux distribution is distorted. These points of the d-q axis equivalent circuit model considering both end effects is more complicated. This paper proposes the d-q axis equivalent circuit and the vector control method considering both static and dynamic end effects of the LIM. As a result, it is shown that the results of the equivalent circuit method(ECM) have a good agreement with those of the finite element method(FEM).

자유 표면이 존재하는 유체 유동 해석을 위한 VOF방법의 기반의 새로운 수치 기법(I)-새로운 자유 표면 추적 알고리즘 및 검증- (A New VOF-based Numerical Scheme for the Simulation of Fluid Flow with Free Surface(I)-New Free Surface Tracking Algorithm and Its Verification-)

  • 김민수;신수호;이우일
    • 대한기계학회논문집B
    • /
    • 제24권12호
    • /
    • pp.1555-1569
    • /
    • 2000
  • Numerical simulation of fluid flow with moving free surface has been carried out. For the free surface flow, a VOF(Volume of Fluid)-based algorithm utilizing a fixed grid system has been investigated. In order to reduce numerical smearing at the free surface represented on a fixed grid system, a new free surface tracking algorithm based on the donor-acceptor scheme has been presented. Novel features of the proposed algorithm are characterized as two numerical tools; the orientation vector to represent the free surface orientation in each cell and the baby-cell to determine the fluid volume flux at each cell boundary. The proposed algorithm can be easily implemented in any irregular non-uniform grid systems that are usual in finite element method (FEM). Moreover, the proposed algorithm can be extended and applied to the 3-D free surface flow problem without additional efforts. For computation of unsteady incompressible flow, a finite element approximation based on the explicit fractional step method has been adopted. In addition, the SUPG(streamline upwind/Petrov-Galerkin) method has been implemented to deal with convection dominated flows. Combination of the proposed free surface tracking scheme and explicit fractional step formulation resulted in an efficient solution algorithm. Validity of the present solution algorithm was demonstrated from its application to the broken dam and the solitary wave propagation problems.

확률유한요소법을 이용한 초고주파 수동소자의 2차원 해석 (The Two Dimensional Analysis of RF Passive Device using Stochastic Finite Element Method)

  • 김준연;정철용;이선영;천창렬
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권4호
    • /
    • pp.249-257
    • /
    • 2000
  • In this paper, we propose the use of stochastic finite element method, that is popularly employed in mechanical structure analysis, for more practical designing purpose of RF device. The proposed method is formulated based on the vector finite element method cooperated by pertubation analysis. The method utilizes sensitivity analysis algorithm with covariance matrix of the random variables that represent for uncertain physical quantities such as length or various electrical constants to compute the probabilities of the measure of performance of the structure. For this computation one need to know the variance and covariance of the random variables that might be determined by practical experiences. The presenting algorithm has been verified by analyzing several device with different be determined by practical experiences. The presenting algorithm has been verified by analysis several device with different measure of performanes. For the convenience of formulation, two dimensional analysis has been performed to apply it into waveguide with dielectric slab. In the problem the dielectric constant of the dielectric slab is considered as random variable. Another example is matched waveguide and cavity problem. In the problem, the dimension of them are assumed to be as random variables and the expectations and variances of quality factor have been computed.

  • PDF

Vector mechanics-based simulation of large deformation behavior in RC shear walls using planar four-node elements

  • Zhang, Hongmei;Shan, Yufei;Duan, Yuanfeng;Yun, Chung Bang;Liu, Song
    • Structural Engineering and Mechanics
    • /
    • 제74권1호
    • /
    • pp.1-18
    • /
    • 2020
  • For the large deformation of shear walls under vertical and horizontal loads, there are difficulties in obtaining accurate simulation results using the response analysis method, even with fine mesh elements. Furthermore, concrete material nonlinearity, stiffness degradation, concrete cracking and crushing, and steel bar damage may occur during the large deformation of reinforced concrete (RC) shear walls. Matrix operations that are involved in nonlinear analysis using the traditional finite-element method (FEM) may also result in flaws, and may thus lead to serious errors. To solve these problems, a planar four-node element was developed based on vector mechanics. Owing to particle-based formulation along the path element, the method does not require repeated constructions of a global stiffness matrix for the nonlinear behavior of the structure. The nonlinear concrete constitutive model and bilinear steel material model are integrated with the developed element, to ensure that large deformation and damage behavior can be addressed. For verification, simulation analyses were performed to obtain experimental results on an RC shear wall subjected to a monotonically increasing lateral load with a constant vertical load. To appropriately evaluate the parameters, investigations were conducted on the loading speed, meshing dimension, and the damping factor, because vector mechanics is based on the equation of motion. The static problem was then verified to obtain a stable solution by employing a balanced equation of motion. Using the parameters obtained, the simulated pushover response, including the bearing capacity, deformation ability, curvature development, and energy dissipation, were found to be in accordance with the experimental observation. This study demonstrated the potential of the developed planar element for simulating the entire process of large deformation and damage behavior in RC shear walls.

이차원 비압축성 유동 계산을 위한 Hermite 겹 3차 유동 함수법 (HERMITE BICUBIC STREAM FUNCTION METHOD FOR INCOMPRESSIBLE FLOW COMPUTATIONS IN TWO DIMENSIONS)

  • 김진환
    • 한국전산유체공학회지
    • /
    • 제13권4호
    • /
    • pp.13-23
    • /
    • 2008
  • This paper is an extension of previous study[1] on a development of a divergence-free element method using a hermite interpolated stream function. Divergence-free velocity bases defined on rectangles derived herein produce pointwise divergence-free flow fields. Hence the explicit imposition of continuity constraint is not necessary and the Galerkin finite element formulation for velocities does not involve the pressure. The divergence-free element of the previous study employed hermite (serendipity) cubic for interpolation of stream function, and it has been noted a possible discontinuity in variables along element interfaces. This deficiency can be removed by use of a hermite bicubic interpolated stream function, which requires four degrees-of-freedom at each element corners. Those degrees-of-freedom are the unknown variable, its x- and y-derivatives and its cross derivative. Detailed derivations are presented for both solenoidal and irrotational basis functions from the hermite bicubic interpolated stream function. Numerical tests are performed on the lid-driven cavity flow, and results are compared with those from hermite serendipity cubics and a stabilized finite element method by Illinca et al[2].

이차원 비압축성 유동 계산을 위한 Hermite 쌍 3차 유동 함수법 (HERMITE BICUBIC STREAM FUNCTION METHOD FOR INCOMPRESSIBLE FLOW COMPUTATIONS IN TWO DIMENSIONS)

  • 김진환
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.33-41
    • /
    • 2008
  • This paper is an extension of previous study[9] on a development of a divergence-free element method using a hermite interpolated stream function. Divergence-free velocity bases defined on rectangles derived herein produce pointwise divergence-free flow fields. Hence the explicit imposition of continuity constraint is not necessary and the Galerkin finite element formulation for velocities does not involve the pressure. The divergence-free element of the previous study employed hermite serendipity cubic for interpolation of stream function, and it has been noted a possible discontinuity in variables along element interfaces. This deficiency can be removed by use of a hermite bicubic interpolated stream function, which requires at each element corners four degrees-of-freedom such as the unknown variable, its x- and y-derivatives and its cross derivative. Detailed derivations are presented for both solenoidal and irrotational bases from the hermite bicubic interpolated stream function. Numerical tests are performed on the lid-driven cavity flow, and results are compared with those from hermite serendipity cubics and a stabilized finite element method by Illinca et al[7].

  • PDF

이차원 비압축성 유동 계산을 위한 Hermite 쌍 3차 유동 함수법 (HERMITE BICUBIC STREAM FUNCTION METHOD FOR INCOMPRESSIBLE FLOW COMPUTATIONS IN TWO DIMENSIONS)

  • 김진환
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.33-41
    • /
    • 2008
  • This paper is an extension of previous study[9] on a development of a divergence-free element method using a hermite interpolated stream function. Divergence-free velocity bases defined on rectangles derived herein produce pointwise divergence-free flow fields. Hence the explicit imposition of continuity constraint is not necessary and the Galerkin finite element formulation for velocities does not involve the pressure. The divergence-free element of the previous study employed hermite serendipity cubic for interpolation of stream function, and it has been noted a possible discontinuity in variables along element interfaces. This deficiency can be removed by use of a hermite bicubic interpolated stream function, which requires at each element corners four degrees-of-freedom such as the unknown variable, its x- and y-derivatives and its cross derivative. Detailed derivations are presented for both solenoidal and irrotational bases from the hermite bicubic interpolated stream function. Numerical tests are performed on the lid-driven cavity flow, and results are compared with those from hermite serendipity cubics and a stabilized finite element method by Illinca et al[7].

  • PDF

반경 방향으로 자화된 Tubular 타입 자기 커플링의 특성 해석 (Characteristics Analysis of Radially Magnetized Tubular type Magnetic Coupling)

  • 김창우;정경훈;최장영
    • 전기학회논문지
    • /
    • 제64권11호
    • /
    • pp.1551-1557
    • /
    • 2015
  • Magnetic coupling is used where required high reliability. because magnetic coupling's durability is stronger than mechanical coupling's durability. This paper shows the characteristics of radially magnetized tubular type magnetic coupling by using Analytical method such as space harmonic method. Analytical method was used, to find force characteristics. First, on the basis of the magnetic vector potential and two-dimensional(2-D) polar-coordinate system, the magnetic field solutions of the radially magnetized permanent magnet are obtained. And we obtain the analytical solutions for the flux density produced by permanent magnet. Finally, we can calculate the force by using the Maxwell stress tensor. And then, Finite element method(FEM) is used to validate force characteristics.

농형 2차측을 갖는 선형 유도 전동기의 엔드바 저항을 고려한 유한 요소 해석 (Finite Element Analysis of a Linear Indution Motor with Cage-type Secondary Taking Account of End-bar Resistance)

  • 박승찬;김병택
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.846-848
    • /
    • 2001
  • In this paper, electromagnetic fields of a linear induction motor with cage-type secondary are analyzed by the finite element method. Contact resistances between end-bars and secondary conductors are considered in the finite element analysis. The field quantify is a magnetic vector potential transformed into a phasor form. As a result, the sensitivities of a phase current thrust and normal force are presented according to the variation of the contact resistance.

  • PDF