• 제목/요약/키워드: Vector Decomposition Problem

검색결과 27건 처리시간 0.023초

ANALYSIS OF THE STRONG INSTANCE FOR THE VECTOR DECOMPOSITION PROBLEM

  • Kwon, Sae-Ran;Lee, Hyang-Sook
    • 대한수학회보
    • /
    • 제46권2호
    • /
    • pp.245-253
    • /
    • 2009
  • A new hard problem called the vector decomposition problem (VDP) was recently proposed by Yoshida et al., and it was asserted that the VDP is at least as hard as the computational Diffie-Hellman problem (CDHP) under certain conditions. Kwon and Lee showed that the VDP can be solved in polynomial time in the length of the input for a certain basis even if it satisfies Yoshida's conditions. Extending our previous result, we provide the general condition of the weak instance for the VDP in this paper. However, when the VDP is practically used in cryptographic protocols, a basis of the vector space ${\nu}$ is randomly chosen and publicly known assuming that the VDP with respect to the given basis is hard for a random vector. Thus we suggest the type of strong bases on which the VDP can serve as an intractable problem in cryptographic protocols, and prove that the VDP with respect to such bases is difficult for any random vector in ${\nu}$.

Vector decomposition of the evolution equations of the conformation tensor of Maxwellian fluids

  • Cho, Kwang-Soo
    • Korea-Australia Rheology Journal
    • /
    • 제21권2호
    • /
    • pp.143-146
    • /
    • 2009
  • Breakthrough of high Weisenberg number problem is related with keeping the positive definiteness of the conformation tensor in numerical procedures. In this paper, we suggest a simple method to preserve the positive definiteness by use of vector decomposition of the conformation tensor which does not require eigenvalue problem. We also derive the constitutive equation of tensor-logarithmic transform in simpler way than that of Fattal and Kupferman and discuss the comparison between the vector decomposition and tensor-logarithmic transformation.

블록 대각 구조를 지닌 2단계 확률계획법의 분해원리 (A Decomposition Method for Two stage Stochstic Programming with Block Diagonal Structure)

  • 김태호;박순달
    • 한국경영과학회지
    • /
    • 제10권1호
    • /
    • pp.9-13
    • /
    • 1985
  • This paper develops a decomposition method for stochastic programming with a block diagonal structure. Here we assume that the right-hand side random vector of each subproblem is differente each other. We first, transform this problem into a master problem, and subproblems in a similar way to Dantizig-Wolfe's Decomposition Princeple, and then solve this master problem by solving subproblems. When we solve a subproblem, we first transform this subproblem to a Deterministic Equivalent Programming (DEF). The form of DEF depends on the type of the random vector of the subproblem. We found the subproblem with finite discrete random vector can be transformed into alinear programming, that with continuous random vector into a convex quadratic programming, and that with random vector of unknown distribution and known mean and variance into a convex nonlinear programming, but the master problem is always a linear programming.

  • PDF

벡터 분해 문제의 어려움에 대한 분석 (Analysis for the difficulty of the vector decomposition problem)

  • 권세란;이향숙
    • 정보보호학회논문지
    • /
    • 제17권3호
    • /
    • pp.27-33
    • /
    • 2007
  • 최근 M.Yoshida 등에 의해 2차원 벡터 공간상의 벡터 분해 문제 (vector decomposition problem 또는 VDP) 가 제안되었고, 그것은 어떤 특별한 조건하에서는 최소한 1차원 부분공간상의 계산적 Diffie-Hellman 문제 (CDHP) 보다 어렵다는 것이 증명되었다. 하지만 그들의 증명이, VDP를 암호학적 프로토콜 설계에 적용하려면 필요한 조건인 벡터 공간상의 주어진 기저에 관한 임의의 벡터의 벡터 분해 문제가 어렵다는 것을 보이는 것은 아니다. 본 논문에서는 비록 어떤 2차원 벡터 공간이 M.Yoshida 등이 제안한 특별한 조건을 만족한다 할지라도, 특정한 모양의 기저에 관해서는 벡터 분해 문제가 다항식 시간 안에 해결될 수 있다는 것을 보여준다. 또한 우리는 다른 구조를 갖는 어떠한 기저들에 대해서는 그 2차원 벡터 공간 상의 임의의 벡터에 대한 벡터 분해 문제가 적어도 CBHP 만큼 어렵다는 것을 증명한다. 그러므로 벡터 분해 문제를 기반이 되는 어려운 문제로 하는 암호학적인 프로토콜을 수행할 때는 기저를 주의하여 선택하여야 한다.

고차원 CMAC 문제의 소요 기억량 감축 (Reducing Memory Requirements of Multidimensional CMAC Problems)

  • 권성규
    • 한국지능시스템학회논문지
    • /
    • 제6권3호
    • /
    • pp.3-13
    • /
    • 1996
  • In orde to reduce huge memory requirements of multidimensional CMAC problems, building a CMAC system by problem decomposition is investigated. Decomposition is based on resolving a displacement vector in cartesian coordinates into unit vectors that define a few lower-dimensional CMACs in the CMAC system. A CMAC system for an an in verse kinematics problem for a planar manipulator was simulated and the performance of the system was evaluated in terms of training and output quality.

  • PDF

Fuzzy SVM for Multi-Class Classification

  • 나은영;홍덕헌;황창하
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2003년도 추계학술대회
    • /
    • pp.123-123
    • /
    • 2003
  • More elaborated methods allowing the usage of binary classifiers for the resolution of multi-class classification problems are briefly presented. This way of using FSVC to learn a K-class classification problem consists in choosing the maximum applied to the outputs of K FSVC solving a one-per-class decomposition of the general problem.

  • PDF

Multiscale self-coordination of bidimensional empirical mode decomposition in image fusion

  • An, Feng-Ping;Zhou, Xian-Wei;Lin, Da-Chao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권4호
    • /
    • pp.1441-1456
    • /
    • 2015
  • The bidimensional empirical mode decomposition (BEMD) algorithm with high adaptability is more suitable to process multiple image fusion than traditional image fusion. However, the advantages of this algorithm are limited by the end effects problem, multiscale integration problem and number difference of intrinsic mode functions in multiple images decomposition. This study proposes the multiscale self-coordination BEMD algorithm to solve this problem. This algorithm outside extending the feather information with the support vector machine which has a high degree of generalization, then it also overcomes the BEMD end effects problem with conventional mirror extension methods of data processing,. The coordination of the extreme value point of the source image helps solve the problem of multiscale information fusion. Results show that the proposed method is better than the wavelet and NSCT method in retaining the characteristics of the source image information and the details of the mutation information inherited from the source image and in significantly improving the signal-to-noise ratio.

음절 단위 임베딩과 딥러닝 기법을 이용한 복합명사 분해 (Compound Noun Decomposition by using Syllable-based Embedding and Deep Learning)

  • 이현영;강승식
    • 스마트미디어저널
    • /
    • 제8권2호
    • /
    • pp.74-79
    • /
    • 2019
  • 기존의 복합명사 분해 알고리즘은 미등록어 단위명사들이 포함된 복합명사를 분해할 때 미등록어를 분리하기 어려운 문제가 발생한다. 이는 현실적으로 모든 고유명사, 신조어, 외래어 등의 모든 단위 명사를 사전에 등록하는 것은 불가능하다는 한계가 존재하기 때문이다. 이 문제를 해결하기 위하여 복합명사 분해 문제를 태그 열 부착(sequence labeling) 문제로 정의하고 음절 단위 임베딩과 딥러닝 기법을 이용하는 복합명사 분해 방법을 제안한다. 단위명사 사전을 구축하지 않고 미등록 단위명사를 인식하기 위하여 복합명사를 구성하는 각 음절들을 연속적인 벡터 공간에 표현하여 LSTM과 선형체인(linear-chain) CRF를 이용하는 방식으로 복합명사를 단위명사들로 분해한다.

강체모드분리와 급수전개를 통한 준해석적 민감도 계산 방법의 개선에 관한 연구(I) - 정적 문제 - (A Refined Semi-Analytic Sensitivity Study Based on the Mode Decomposition and Neumann Series Expansion (I) - Static Problem -)

  • 조맹효;김현기
    • 대한기계학회논문집A
    • /
    • 제27권4호
    • /
    • pp.585-592
    • /
    • 2003
  • Among various sensitivity evaluation techniques, semi-analytical method(SAM) is quite popular since this method is more advantageous than analytical method(AM) and global finite difference method(FDM). However, SAM reveals severe inaccuracy problem when relatively large rigid body motions are identified fur individual elements. Such errors result from the numerical differentiation of the pseudo load vector calculated by the finite difference scheme. In the present study, an iterative method combined with mode decomposition technique is proposed to compute reliable semi-analytical design sensitivities. The improvement of design sensitivities corresponding to the rigid body mode is evaluated by exact differentiation of the rigid body modes and the error of SAM caused by numerical difference scheme is alleviated by using a Von Neumann series approximation considering the higher order terms for the sensitivity derivatives.

낮은 계수 행렬의 Compressed Sensing 복원 기법 (Compressed Sensing of Low-Rank Matrices: A Brief Survey on Efficient Algorithms)

  • 이기륭;예종철
    • 대한전자공학회논문지SP
    • /
    • 제46권5호
    • /
    • pp.15-24
    • /
    • 2009
  • Compressed sensing은 소수의 선형 관측으로부터 sparse 신호를 복원하는 문제를 언급하고 있다. 최근 벡터 경우에서의 성공적인 연구 결과가 행렬의 경우로 확장되었다. Low-rank 행렬의 compressed sensing은 ill-posed inverse problem을 low-rank 정보를 이용하여 해결한다. 본 문제는 rank 최소화 혹은 low-rank 근사의 형태로 나타내질 수 있다. 본 논문에서는 최근 제안된 여러 가지 효율적인 알고리즘에 대한 survey를 제공한다.