• Title/Summary/Keyword: Vector ARMA model

Search Result 10, Processing Time 0.025 seconds

포르만트 주파수를 이용한 한국어 음성의 자동인식에 관한 연구

  • 김순협;박규태
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1983.04a
    • /
    • pp.16-17
    • /
    • 1983
  • In Speech signal processing, ARMA spectral estimation method is used. It has been demonstrated that the ARMA model provides better spectral estimation then the more specialized AR model and MA model. Dynamic program is used to achieve time algnment. Speech sound similarity is defined to be proportional to the distance seperating to sound in a vector space defined by ARMA model. AS a result, the recognition rate of 97.3% for three speaker is obtained.

  • PDF

Nonlinear damage detection using linear ARMA models with classification algorithms

  • Chen, Liujie;Yu, Ling;Fu, Jiyang;Ng, Ching-Tai
    • Smart Structures and Systems
    • /
    • v.26 no.1
    • /
    • pp.23-33
    • /
    • 2020
  • Majority of the damage in engineering structures is nonlinear. Damage sensitive features (DSFs) extracted by traditional methods from linear time series models cannot effectively handle nonlinearity induced by structural damage. A new DSF is proposed based on vector space cosine similarity (VSCS), which combines K-means cluster analysis and Bayesian discrimination to detect nonlinear structural damage. A reference autoregressive moving average (ARMA) model is built based on measured acceleration data. This study first considers an existing DSF, residual standard deviation (RSD). The DSF is further advanced using the VSCS, and then the advanced VSCS is classified using K-means cluster analysis and Bayes discriminant analysis, respectively. The performance of the proposed approach is then verified using experimental data from a three-story shear building structure, and compared with the results of existing RSD. It is demonstrated that combining the linear ARMA model and the advanced VSCS, with cluster analysis and Bayes discriminant analysis, respectively, is an effective approach for detection of nonlinear damage. This approach improves the reliability and accuracy of the nonlinear damage detection using the linear model and significantly reduces the computational cost. The results indicate that the proposed approach is potential to be a promising damage detection technique.

Assessment of Wind Power Prediction Using Hybrid Method and Comparison with Different Models

  • Eissa, Mohammed;Yu, Jilai;Wang, Songyan;Liu, Peng
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1089-1098
    • /
    • 2018
  • This study aims at developing and applying a hybrid model to the wind power prediction (WPP). The hybrid model for a very-short-term WPP (VSTWPP) is achieved through analytical data, multiple linear regressions and least square methods (MLR&LS). The data used in our hybrid model are based on the historical records of wind power from an offshore region. In this model, the WPP is achieved in four steps: 1) transforming historical data into ratios; 2) predicting the wind power using the ratios; 3) predicting rectification ratios by the total wind power; 4) predicting the wind power using the proposed rectification method. The proposed method includes one-step and multi-step predictions. The WPP is tested by applying different models, such as the autoregressive moving average (ARMA), support vector machine (SVM), and artificial neural network (ANN). The results of all these models confirmed the validity of the proposed hybrid model in terms of error as well as its effectiveness. Furthermore, forecasting errors are compared to depict a highly variable WPP, and the correlations between the actual and predicted wind powers are shown. Simulations are carried out to definitely prove the feasibility and excellent performance of the proposed method for the VSTWPP versus that of the SVM, ANN and ARMA models.

Analysis of Multivariate Financial Time Series Using Cointegration : Case Study

  • Choi, M.S.;Park, J.A.;Hwang, S.Y.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.1
    • /
    • pp.73-80
    • /
    • 2007
  • Cointegration(together with VARMA(vector ARMA)) has been proven to be useful for analyzing multivariate non-stationary data in the field of financial time series. It provides a linear combination (which turns out to be stationary series) of non-stationary component series. This linear combination equation is referred to as long term equilibrium between the component series. We consider two sets of Korean bivariate financial time series and then illustrate cointegration analysis. Specifically estimated VAR(vector AR) and VECM(vector error correction model) are obtained and CV(cointegrating vector) is found for each data sets.

  • PDF

Testing for a unit root in an AR(p) signal observed with MA(q) noise when the MA parameters are unknown

  • Jeong, Dong-bin;Sahadeb Sarkar
    • Journal of the Korean Statistical Society
    • /
    • v.27 no.2
    • /
    • pp.165-187
    • /
    • 1998
  • Shin and Sarkar (1993, 1994) studied the problem of testing for a unit root in an AR(p) signal observed with MA(q) noise when the MA parameters are known. In this paper we consider the case when the MA parameters are unknown and to be estimated. Test statistics are defined using unit root parameter estimates based on three different estimation methods of Hannan and Rissanen (1982), Kohn (1979) and Shin and Sarkar (1995). An AR(p) process contaminated by MA(q) noise is a .estricted ARMA model, for which Shin and Sarkar (1995) derived an easy-to-compute Newton- Raphson estimator The two-stage estimation p.ocedu.e of Hannan and Rissanen (1982) is used to compute initial parameter estimates in implementing the iterative estimation methods of both Shin and Sarkar (1995) and Kohn (1979). In a simulation study we compare the relative performance of these unit root tests with respect to both size and power for p=q=1.

  • PDF

Long Memory and Cointegration in Crude Oil Market Dynamics (국제원유시장의 동적 움직임에 내재하는 장기기억 특성과 공적분 관계 연구)

  • Kang, Sang Hoon;Yoon, Seong-Min
    • Environmental and Resource Economics Review
    • /
    • v.19 no.3
    • /
    • pp.485-508
    • /
    • 2010
  • This paper examines the long memory property and investigates cointegration in the dynamics of crude oil markets. For these purposes, we apply the joint ARMA-FIAPARCH model with structural break and the vector error correction model (VECM) to three daily crude oil prices: Brent, Dubai and West Texas Intermediate (WTI). In all crude oil markets, the property of long memory exists in their volatility, and the ARMA-FIAPARCH model adequately captures this long memory property. In addition, the results of the cointegration test and VECM estimation indicate a bi-directional relationship between returns and the conditional variance of crude oil prices. This finding implies that the dynamics of returns affect volatility, and vice versa. These findings can be utilized for improving the understanding of the dynamics of crude oil prices and forecasting market risk for buyers and sellers in crude oil markets.

  • PDF

Real-Time Prediction of Streamflows by the State-Vector Model (상태(狀態)벡터 모형(模型)에 의한 하천유출(河川流出)의 실시간(實時間) 예측(豫測)에 관한 연구(研究))

  • Seoh, Byung Ha;Yun, Yong Nam;Kang, Kwan Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.3
    • /
    • pp.43-56
    • /
    • 1982
  • A recursive algorithms for prediction of streamflows by Kalman filtering theory and Self-tuning predictor based on the state space description of the dynamic systems have been studied and the applicabilities of the algorithms to the rainfall-runoff processes have been investigated. For the representation of the dynamics of the processes, a low-order ARMA process has been taken as the linear discrete time system with white Gaussian disturbances. The state vector in the prediction model formulated by a random walk process. The model structures have been determined by a statistical analysis for residuals of the observed and predicted streamflows. For the verification of the prediction algorithms developed here, the observed historical data of the hourly rainfall and streamflows were used. The numerical studies shows that Kalman filtering theory has better performance than the Self-tuning predictor for system identification and prediction in rainfall-runoff processes.

  • PDF

Estimation Of System Parameters With Arma Model (자기회귀-이중평균모델에 의한 시스템 파라미터 추정)

  • Hwang, Won-Geol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.4
    • /
    • pp.76-83
    • /
    • 1991
  • 자기회귀-이동평균모델에 의하여 시스템의 파라미터를 추정할 수 있는 벡터채널 원형 격자 필터(vector channel circular lattice filter)의 알고리즘을 제시하였다. 이 알고리즘은 스칼라 연산만으로 이루어져 계산이 간단한 장점이 있다. 3자유도 시스템의 시뮬레이션 결과로부터 격자 필터의 성능을 검증하였으며, 1자유도 팔의 고유진동수와 감쇄비를 추정하였다.

  • PDF

Short-term Forecasting of Power Demand based on AREA (AREA 활용 전력수요 단기 예측)

  • Kwon, S.H.;Oh, H.S.
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.1
    • /
    • pp.25-30
    • /
    • 2016
  • It is critical to forecast the maximum daily and monthly demand for power with as little error as possible for our industry and national economy. In general, long-term forecasting of power demand has been studied from both the consumer's perspective and an econometrics model in the form of a generalized linear model with predictors. Time series techniques are used for short-term forecasting with no predictors as predictors must be predicted prior to forecasting response variables and containing estimation errors during this process is inevitable. In previous researches, seasonal exponential smoothing method, SARMA (Seasonal Auto Regressive Moving Average) with consideration to weekly pattern Neuron-Fuzzy model, SVR (Support Vector Regression) model with predictors explored through machine learning, and K-means clustering technique in the various approaches have been applied to short-term power supply forecasting. In this paper, SARMA and intervention model are fitted to forecast the maximum power load daily, weekly, and monthly by using the empirical data from 2011 through 2013. $ARMA(2,\;1,\;2)(1,\;1,\;1)_7$ and $ARMA(0,\;1,\;1)(1,\;1,\;0)_{12}$ are fitted respectively to the daily and monthly power demand, but the weekly power demand is not fitted by AREA because of unit root series. In our fitted intervention model, the factors of long holidays, summer and winter are significant in the form of indicator function. The SARMA with MAPE (Mean Absolute Percentage Error) of 2.45% and intervention model with MAPE of 2.44% are more efficient than the present seasonal exponential smoothing with MAPE of about 4%. Although the dynamic repression model with the predictors of humidity, temperature, and seasonal dummies was applied to foretaste the daily power demand, it lead to a high MAPE of 3.5% even though it has estimation error of predictors.

Forecasting for a Credit Loan from Households in South Korea

  • Jeong, Dong-Bin
    • The Journal of Industrial Distribution & Business
    • /
    • v.8 no.4
    • /
    • pp.15-21
    • /
    • 2017
  • Purpose - In this work, we examined the causal relationship between credit loans from households (CLH), loan collateralized with housing (LCH) and an interest of certificate of deposit (ICD) among others in South Korea. Furthermore, the optimal forecasts on the underlying model will be obtained and have the potential for applications in the economic field. Research design, data, and methodology - A total of 31 realizations sampled from the 4th quarter in 2008 to the 4th quarter in 2016 was chosen for this research. To achieve the purpose of this study, a regression model with correlated errors was exploited. Furthermore, goodness-of-fit measures was used as tools of optimal model-construction. Results - We found that by applying the regression model with errors component ARMA(1,5) to CLH, the steep and lasting rise can be expected over the next year, with moderate increase of LCH and ICD. Conclusions - Based on 2017-2018 forecasts for CLH, the precipitous and lasting increase can be expected over the next two years, with gradual rise of two major explanatory variables. By affording the assumption that the feedback among variables can exist, we can, in the future, consider more generalized models such as vector autoregressive model and structural equation model, to name a few.