• 제목/요약/키워드: Vascular smooth muscle cells (VSMCs)

검색결과 79건 처리시간 0.031초

Comparative Study of the Inhibitory Effect of Luteolin and Luteolin-7-Glucoside on Rat Aortic Vascular Smooth Muscle Cell Proliferation

  • Kim, Jin-Ho;Kim, Soo-Yeon;Lim, Yong;Pyo, Hyeong-Bae;Park, Byeoung-Soo;Yoo, Hwan-Soo;Yun, Yeo-Pyo
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.102.2-103
    • /
    • 2003
  • It has been previously reported that luteolin and luteolin-7-glucoside displayed the potent anti-oxidant and anti-inflammatory effects, which have also been successful in reducing vascular smooth muscle cells(VSMCs) proliferation. In this study, a possible anti-proliferative effect and its mechanism on rat aortic VSMCs by luteolin and luteolin-7-glucoside were investigated. Luteolin significantly inhibited the platelet-derived growth factor(PDGF)-BB-induced proliferation of rat aortic VSMCs. While luteolin-7-glucoside weakly inhibited the proliferation. (omitted)

  • PDF

Wogonin attenuates vascular remodeling by inhibiting smooth muscle cell proliferation and migration in hypertensive rat

  • Yang Yang;Shan Huang;Jun Wang;Xiao Nie;Ling Huang;Tianfa Li
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제28권1호
    • /
    • pp.39-48
    • /
    • 2024
  • Wogonin, extracted from the roots of Scutellaria baicalensis Georgi, has been shown to suppress collagen deposition in spontaneously hypertensive rats (SHRs). This study was performed to investigate the role and mechanism of wogonin underlying vascular remodeling in SHRs. After injection of SHRs with 40 mg/kg of wogonin, blood pressure in rats was measured once a week. Masson's trichrome staining was conducted to observe the changes in aortas and mesenteric arteries. Vascular smooth muscle cells (VSMCs) isolated from rat thoracic aortas were treated with Angiotensin II (Ang II; 100 nM) in the presence or absence of varying concentrations of wogonin. The viability and proliferation of VSMCs were examined using Cell Counting Kit-8 assay and 5-ethynyl-2'-deoxyuridine assay, respectively. The migration of VSMCs was examined using wound healing assay and transwell assay. We found that wogonin administration alleviated hypertension, increased lumen diameter, and reduced the thickness of the arterial media in SHRs. Ang II treatment enhanced the viability of VSMCs, which was inhibited by wogonin in a concentration-dependent manner. Wogonin reversed Ang II-induced increases in the viability, proliferation, and migration of VSMCs. Moreover, wogonin inhibited Ang II-induced activation of mitogen-activated protein kinase (MAPK) signaling in VSMCs. Overall, wogonin repressed the proliferative and migratory capacity of VSMCs by regulating the MAPK signaling pathway, thereby attenuating vascular remodeling in hypertensive rats, indicating that wogonin might be a therapeutic agent for the treatment of vascular diseases.

Sulfatase 1 mediates the inhibitory effect of angiotensin II type 2 receptor inhibitor on angiotensin II-induced hypertensive mediator expression and proliferation in vascular smooth muscle cells from spontaneously hypertensive rats

  • Kim, Hye Young;Cha, Hye Ju;Kim, Hee Sun
    • Journal of Yeungnam Medical Science
    • /
    • 제34권1호
    • /
    • pp.43-54
    • /
    • 2017
  • Background: Extracellular sulfatases (Sulfs), sulfatase 1 (Sulf1) and sulfatase 2 (Sulf2), play a pivotal role in cell signaling by remodeling the 6-O-sulfation of heparan sulfate proteoglycans on the cell surface. The present study examined the effects of Sulfs on angiotensin II (Ang II)-induced hypertensive mediator expression and vascular smooth muscle cells (VSMCs) proliferation in spontaneously hypertensive rats (SHR). Methods: Ang II receptors, 12-lipoxygenase (12-LO), and endothelin-1 (ET-1) messenger RNA (mRNA) expressions in SHR VSMCs were analyzed by real-time polymerase chain reaction and Western blotting. VSMCs proliferation was determined by [$^3H$]-thymidine incorporation. Results: Basal Sulfs mRNAs expression and enzyme activity were elevated in SHR VSMCs. However, Sulfs had no effect on the basal or Ang II-induced 12-LO and ET-1 mRNA expression in SHR VSMCs. The inhibition of Ang II-induced 12-LO and ET-1 expression by blockade of the Ang II type 2 receptor ($AT_2\;R$) pathway was not observed in Sulf1 siRNA-transfected SHR VSMCs. However, Sulf2 did not affect the action of $AT_2\;R$ inhibitor on Ang II-induced 12-LO and ET-1 expression in SHR VSMCs. The down-regulation of Sulf1 induced a reduction of $AT_2\;R$ mRNA expression in SHR VSMCs. In addition, the inhibition of Ang II-induced VSMCs proliferation by blockade of the $AT_2\;R$ pathway was mediated by Sulf1 in SHR VSMCs. Conclusion: These findings suggest that extracellular sulfatase Sulf1 plays a modulatory role in the $AT_2\;R$ pathway that leads to an Ang II-induced hypertensive effects in SHR VSMCs.

Kalkitoxin attenuates calcification of vascular smooth muscle cells via RUNX-2 signaling pathways

  • Saroj K Shrestha;Se-Woong Kim;Yunjo Soh
    • Journal of Veterinary Science
    • /
    • 제24권5호
    • /
    • pp.69.1-69.11
    • /
    • 2023
  • Background: Kalkitoxin (KT) is an active lipopeptide isolated from the cyanobacterium Lyngbya majuscula found in the bed of the coral reef. Although KT suppresses cell division and inflammation, KT's mechanism of action in vascular smooth muscle cells (VSMCs) is unidentified. Therefore, our main aim was to investigate the impact of KT on vascular calcification for the treatment of cardiovascular disease. Objectives: Using diverse calcification media, we studied the effect of KT on VSMC calcification and the underlying mechanism of this effect. Methods: VSMC was isolated from the 6 weeks ICR mice. Then VSMCs were treated with different concentrations of KT to check the cell viability. Alizarin red and von Kossa staining were carried out to examine the calcium deposition on VSMC. Thoracic aorta of 6 weeks mice were taken and treated with different concentrations of KT, and H and E staining was performed. Real-time polymerase chain reaction and western blot were performed to examine KT's effect on VSMC mineralization. Calcium deposition on VSMC was examined with a calcium deposition quantification kit. Results: Calcium deposition, Alizarin red, and von Kossa staining revealed that KT reduced inorganic phosphate-induced calcification phenotypes. KT also reduced Ca++-induced calcification by inhibiting genes that regulate osteoblast differentiation, such as runtrelated transcription factor 2 (RUNX-2), SMAD family member 4, osterix, collagen 1α, and osteopontin. Also, KT repressed Ca2+-induced bone morphogenetic protein 2, RUNX-2, collagen 1α, osteoprotegerin, and smooth muscle actin protein expression. Likewise, Alizarin red and von Kossa staining showed that KT markedly decreased the calcification of ex vivo ring formation in the mouse thoracic aorta. Conclusions: This experiment demonstrated that KT decreases vascular calcification and may be developed as a new therapeutic treatment for vascular calcification and arteriosclerosis.

Whey Protein Attenuates Angiotensin II-Primed Premature Senescence of Vascular Smooth Muscle Cells through Upregulation of SIRT1

  • Hwang, Jung Seok;Han, Sung Gu;Lee, Chi-Ho;Seo, Han Geuk
    • 한국축산식품학회지
    • /
    • 제37권6호
    • /
    • pp.917-925
    • /
    • 2017
  • Whey protein, a by-product of milk curdling, exhibits diverse biological activities and is used as a dietary supplement. However, its effects on stress-induced vascular aging have not yet been elucidated. In this study, we found that whey protein significantly inhibited the Ang II-primed premature senescence of vascular smooth muscle cells (VSMCs). In addition, we observed a marked dose- and time-dependent increase in SIRT1 promoter activity and mRNA in VSMCs exposed to whey protein, accompanied by elevated SIRT1 protein expression. Ang II-mediated repression of SIRT1 level was dose-dependently reversed in VSMCs treated with whey protein, suggesting that SIRT1 is involved in preventing senescence in response to this treatment. Furthermore, resveratrol, a well-defined activator of SIRT1, potentiated the effects of whey protein on Ang II-primed premature senescence, whereas sirtinol, an inhibitor of SIRT1, exerted the opposite. Taken together, these results indicated that whey protein-mediated upregulation of SIRT1 exerts an anti-senescence effect, and can thus ameliorate Ang II-induced vascular aging as a dietary supplement.

Inhibitory Effects of YP 12, A Newly Synthesized Obovatol Derivative on Rat Aortic Vascular Smooth Muscle Cell Proliferation

  • Lim, Yong;Lee, Mi-Yea;Jung, Jae-Kyung;Pyo, Myoung-Yun;Yun, Yeo-Pyo
    • 한국식품위생안전성학회지
    • /
    • 제26권3호
    • /
    • pp.187-191
    • /
    • 2011
  • Platelet derived growth factor (PDGF)-BB is one of the most potent vascular smooth muscle cell(VSMC) proliferative factors, and abnormal VSMC proliferation by PDGF-BB plays an important role in the development and progression of atherosclerosis. The aim of this study was to assess the effect of YP 12, a newly synthesized obovatol derivative, on the proliferation of PDGF-BB-stimulated rat aortic VSMCs. The anti-proliferative effects of YP 12 on rat aortic VSMCs were examined by direct cell counting and by using $[^3H]$ thymidine incorporation assays. It was found that YP 12 potently inhibited the growth of VSMCs. The pre-incubation of YP 12 (1-4 ${\mu}M$) significantly inhibited the proliferation and DNA synthesis of 25 ng/ml PDGF-BB-stimulated rat aortic VSMCs in a concentration-dependent manner. In accordance with these findings, YP 12 revealed blocking of the PDGF-BB-inducible progression through G0/G1 to S phase of the cell cycle in synchronized cells. Whereas, YP 12 did not show any cytotoxicity in rat aortic VSMCs in this experimental condition by WST-1 assay. These results also show that YP 12 may have potential as an anti-proliferative agent for the treatment of restenosis and atherosclerosis.

Murrayafoline A Induces a G0/G1-Phase Arrest in Platelet-Derived Growth Factor-Stimulated Vascular Smooth Muscle Cells

  • Han, Joo-Hui;Kim, Yohan;Jung, Sang-Hyuk;Lee, Jung-Jin;Park, Hyun-Soo;Song, Gyu-Yong;Nguyen, Manh Cuong;Kim, Young Ho;Myung, Chang-Seon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권5호
    • /
    • pp.421-426
    • /
    • 2015
  • The increased potential for vascular smooth muscle cell (VSMC) growth is a key abnormality in the development of atherosclerosis and post-angioplasty restenosis. Abnormally high activity of platelet-derived growth factor (PDGF) is believed to play a central role in the etiology of these pathophysiological situations. Here, we investigated the anti-proliferative effects and possible mechanism(s) of murrayafoline A, a carbazole alkaloid isolated from Glycosmis stenocarpa Guillamin (Rutaceae), on PDGF-BB-stimulated VSMCs. Murrayafoline A inhibited the PDGF-BB-stimulated proliferation of VSMCs in a concentration-dependent manner, as measured using a non-radioactive colorimetric WST-1 assay and direct cell counting. Furthermore, murrayafoline A suppressed the PDGF-BB-stimulated progression through $G_0/G_1$ to S phase of the cell cycle, as measured by [$^3H$]-thymidine incorporation assay and cell cycle progression analysis. This anti-proliferative action of murrayafoline A, arresting cell cycle progression at $G_0/G_1$ phase in PDGF-BB-stimulated VSMCs, was mediated via down-regulation of the expression of cyclin D1, cyclin E, cyclin-dependent kinase (CDK)2, CDK4, and proliferating cell nuclear antigen (PCNA), and the phosphorylation of retinoblastoma protein (pRb). These results indicate that murrayafoline A may be useful in preventing the progression of vascular complications such as restenosis after percutaneous transluminal coronary angioplasty and atherosclerosis.

Endothelial dysfunction induces atherosclerosis: increased aggrecan expression promotes apoptosis in vascular smooth muscle cells

  • Kim, Sang-Min;Huh, Jae-Wan;Kim, Eun-Young;Shin, Min-Kyung;Park, Ji-Eun;Kim, Seong Who;Lee, Wooseong;Choi, Bongkun;Chang, Eun-Ju
    • BMB Reports
    • /
    • 제52권2호
    • /
    • pp.145-150
    • /
    • 2019
  • Endothelial dysfunction-induced lipid retention is an early feature of atherosclerotic lesion formation. Apoptosis of vascular smooth muscle cells (VSMCs) is one of the major modulating factors of atherogenesis, which accelerates atherosclerosis progression by causing plaque destabilization and rupture. However, the mechanism underlying VSMC apoptosis mediated by endothelial dysfunction in relation to atherosclerosis remains elusive. In this study, we reveal differential expression of several genes related to lipid retention and apoptosis, in conjunction with atherosclerosis, by utilizing a genetic mouse model of endothelial nitric oxide synthase (eNOS) deficiency manifesting endothelial dysfunction. Moreover, eNOS deficiency led to the enhanced susceptibility against pro-apoptotic insult in VSMCs. In particular, the expression of aggrecan, a major proteoglycan, was elevated in aortic tissue of eNOS deficient mice compared to wild type mice, and administration of aggrecan induced apoptosis in VSMCs. This suggests that eNOS deficiency may elevate aggrecan expression, which promotes apoptosis in VSMC, thereby contributing to atherosclerosis progression. These results may facilitate the development of novel approaches for improving the diagnosis or treatment of atherosclerosis.

Blockade of Urotensin II Receptor Prevents Vascular Dysfunction

  • Kim, Young-Ae;Lee, Dong Gil;Yi, Kyu Yang;Lee, Byung Ho;Jung, Yi-Sook
    • Biomolecules & Therapeutics
    • /
    • 제24권5호
    • /
    • pp.523-528
    • /
    • 2016
  • Urotensin II (UII) is a potent vasoactive peptide and mitogenic agent to induce proliferation of various cells including vascular smooth muscle cells (VSMCs). In this study, we examined the effects of a novel UII receptor (UT) antagonist, KR-36676, on vasoconstriction of aorta and proliferation of aortic SMCs. In rat aorta, UII-induced vasoconstriction was significantly inhibited by KR-36676 in a concentration-dependent manner. In primary human aortic SMCs (hAoSMCs), UII-induced cell proliferation was significantly inhibited by KR-36676 in a concentration-dependent manner. In addition, KR-36676 decreased UII-induced phosphorylation of ERK, and UII-induced cell proliferation was also significantly inhibited by a known ERK inhibitor U0126. In mouse carotid ligation model, intimal thickening of carotid artery was dramatically suppressed by oral treatment with KR-36676 (30 mg/kg/day) for 4 weeks compared to vehicle-treated group. From these results, it is indicated that KR-36676 suppress UII-induced proliferation of VSMCs at least partially through inhibition of ERK activation, and that it also attenuates UII-induced vasoconstriction and vascular neointima formation. Our study suggest that KR-36676 may be an attractive candidate for the pharmacological management of vascular dysfunction.

Roles of ERK and NF-${\kappa}$ B in Interleukin-8 Expression in Response to Heat Shock Protein 22 in Vascular Smooth Muscle Cells

  • Kang, Seung-Hun;Lee, Ji-Hyuk;Choi, Kyung-Ha;Rhim, Byung-Yong;Kim, Koan-Hoi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제12권4호
    • /
    • pp.171-176
    • /
    • 2008
  • Heat shock proteins (HSPs) serve as molecular chaperones and play a role in cell protection from damage in response to stress stimuli. The aim of this article is to investigate whether HSP22 affects IL-8 expression in vascular smooth muscle cells (VSMCs), and which cellular factors are involved in the HSP-mediated IL-8 induction in that cell type in terms of mitogen activated protein kinase (MAPK) and transcription element. Exposure of aortic smooth muscle cells (AoSMCs) to HSP22 not only enhanced IL-8 release but also induced IL-8 transcript via promoter activation. HSP22 activated ERK and p38 MAPK in AoSMCs. HSP22-induced IL-8 release was inhibited by U0126, but not by SB202190. A mutation in the IL-8 promoter region at the binding site of NF-${\kappa}$ B, but not AP-1 or C/EBP, impaired promoter activation in response to HSP22. Delivery of I ${\kappa}$ B, but not dominant negative c-Jun, lowered HSP22-induced IL-8 release from AoSMCs. These results suggest that HS P22 induces IL-8 in VSMCs via ERK1/2, and that transcription factor NF-kB may be required for the HSP22-induced IL-8 up-regulation.