• 제목/요약/키워드: Variational Technology

검색결과 211건 처리시간 0.03초

결정소성학에 의한 미세 성형공정의 유한요소해석 (Finite Element Analysis of Micro Forming Process by Crystal Plasticity)

  • 김흥규;오수익
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.209-212
    • /
    • 2001
  • It is known that the mim forming processes show somewhat different phenomena compared with the conventional metal forming processes, namely, the size effect, enhanced friction effect and etc. Such typical phenomena, however, are not predicted by the conventional finite element analysis, which has been an efficient numerical tool to predict the metal forming processes. It is due to the fact that the constitutive relations used does not describe the microstructural characteristics of the materials. In the present investigation, the finite element formulation using the rate-dependent rigid plastic crystal plasticity model of the face-centered cubic materials is conducted to predict the micro mechanical behaviors during the mim forming processes. The finite element analysis, however, provides mesh-dependent solutions for the intragranular deformations. Therefore, the couple stress energy is additionally introduced into the variational principle and formulated within the framework of the rigid plastic finite element method to obtain mesh-independent solutions. Micro deformations of single crystal and bicrystal with various orientations are calculated to show the potential of the developed formulation.

  • PDF

Nonlinear flexural analysis of laminated composite flat panel under hygro-thermo-mechanical loading

  • Kar, Vishesh R.;Mahapatra, Trupti R.;Panda, Subrata K.
    • Steel and Composite Structures
    • /
    • 제19권4호
    • /
    • pp.1011-1033
    • /
    • 2015
  • In this article, large amplitude bending behaviour of laminated composite flat panel under combined effect of moisture, temperature and mechanical loading is investigated. The laminated composite panel model has been developed mathematically by introducing the geometrical nonlinearity in Green-Lagrange sense in the framework of higher-order shear deformation theory. The present study includes the degraded composite material properties at elevated temperature and moisture concentration. In order to achieve any general case, all the nonlinear higher order terms have been included in the present formulation and the material property variations are introduced through the micromechanical model. The nonlinear governing equation is obtained using the variational principle and discretised using finite element steps. The convergence behaviour of the present numerical model has been checked. The present proposed model has been validated by comparing the responses with those available published results. Some new numerical examples have been solved to show the effect of various parameters on the bending behaviour of laminated composite flat panel under hygro-thermo-mechanical loading.

Nonlinear free vibration and post-buckling of FG-CNTRC beams on nonlinear foundation

  • Shafiei, Hamed;Setoodeh, Ali Reza
    • Steel and Composite Structures
    • /
    • 제24권1호
    • /
    • pp.65-77
    • /
    • 2017
  • The purpose of this research is to study the nonlinear free vibration and post-buckling analysis of functionally graded carbon nanotube reinforced composite (FG-CNTRC) beams resting on a nonlinear elastic foundation. Uniformly and functionally graded distributions of single walled carbon nanotubes as reinforcing phase are considered in the polymeric matrix. The modified form of rule of mixture is used to estimate the material properties of CNTRC beams. The governing equations are derived employing Euler-Bernoulli beam theory along with energy method and Hamilton's principle. Applying von $K\acute{a}rm\acute{a}n's$ strain-displacement assumptions, the geometric nonlinearity is taken into consideration. The developed governing equations with quadratic and cubic nonlinearities are solved using variational iteration method (VIM) and the analytical expressions and numerical results are obtained for vibration and stability analysis of nanocomposite beams. The presented comparative results are indicative for the reliability, accuracy and fast convergence rate of the solution. Eventually, the effects of different parameters, such as foundation stiffness, volume fraction and distributions of carbon nanotubes, slenderness ratio, vibration amplitude, coefficients of elastic foundation and boundary conditions on the nonlinear frequencies, vibration response and post-buckling loads of FG-CNTRC beams are examined. The developed analytical solution provides direct insight into parametric studies of particular parameters of the problem.

헬리컬 코니칼 인볼류트기어의 3D 모델링과 치면 응력해석에 관한 연구 (A Study on 3D Modeling & Stress Analysis of Helical Conical Involute Gear)

  • 강재화;이도영;김준성;허철수;류성기
    • 한국기계가공학회지
    • /
    • 제13권1호
    • /
    • pp.45-51
    • /
    • 2014
  • Generally, marine transmissions contain straight shafts and helical gears, meaning that enginerooms require more space. In order to guarantee a levelengine space for conical involute gears or beveloid gears, both of which are important machine parts, a conical gear was used to replace the traditional cylinder gear. Owing to weak points such as the point contact phenomenon of the teeth, a limitation of the width of each tooth in terms of the addendum, the variational modification coefficient,and the difficulty of processing, research about conical involute gears remains at a standstill. Along with the increasing number of applications of conical involute gears, research on conical gear design technology is necessary. In this paper, in an effort to enhance conical gear design technology, research on the 3D modeling and stress analyses of helical conical involute gears were done.

Bi-S 쾌삭강의 칩생성특성 (Chip Forming Characteristics of Bi-S Free Machining Steel)

  • 조삼규
    • 한국생산제조학회지
    • /
    • 제9권3호
    • /
    • pp.48-54
    • /
    • 2000
  • In this study the characteristics of chip formation of the cold drawn Bi-S free machining steels were assessed. And for comparison those of the cold drawn Pb-S free machining steel the hot rolled low carbon steel which has MnS as free machining inclusions and the conventional steels were also investigated. During chip formation the cold drawn free machining steels show relatively little change in thickness and width of chip compare to those of the conventional carbon steels. And a single parameter which indicates the degree of deformation during chip formation chip cross-section area ratio is introduced. The chip cross-section area ratio is defined as chip cross-section area is divided by undeformed chip cross-section area. The variational patters of the chip cross-section area ratio of the materials cut are similar to those of the shear strain values. The shear stress however seems to be dependent on the carbon content of the materials. The cold drawn Bi-S and Pb-S steels show nearly the same chip forming behaviors and the energy consumed during chip formation is almost same. A low carbon steel without free machining aids shows poor chip breakability due to its high ductility. By introducing a small amount of free machining inclusions such as MnS Bi, Pb or merely increasing carbon content the chip breakability improves significantly.

  • PDF

Deep Image Annotation and Classification by Fusing Multi-Modal Semantic Topics

  • Chen, YongHeng;Zhang, Fuquan;Zuo, WanLi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권1호
    • /
    • pp.392-412
    • /
    • 2018
  • Due to the semantic gap problem across different modalities, automatically retrieval from multimedia information still faces a main challenge. It is desirable to provide an effective joint model to bridge the gap and organize the relationships between them. In this work, we develop a deep image annotation and classification by fusing multi-modal semantic topics (DAC_mmst) model, which has the capacity for finding visual and non-visual topics by jointly modeling the image and loosely related text for deep image annotation while simultaneously learning and predicting the class label. More specifically, DAC_mmst depends on a non-parametric Bayesian model for estimating the best number of visual topics that can perfectly explain the image. To evaluate the effectiveness of our proposed algorithm, we collect a real-world dataset to conduct various experiments. The experimental results show our proposed DAC_mmst performs favorably in perplexity, image annotation and classification accuracy, comparing to several state-of-the-art methods.

A GENERAL ITERATIVE ALGORITHM COMBINING VISCOSITY METHOD WITH PARALLEL METHOD FOR MIXED EQUILIBRIUM PROBLEMS FOR A FAMILY OF STRICT PSEUDO-CONTRACTIONS

  • Jitpeera, Thanyarat;Inchan, Issara;Kumam, Poom
    • Journal of applied mathematics & informatics
    • /
    • 제29권3_4호
    • /
    • pp.621-639
    • /
    • 2011
  • The purpose of this paper is to introduce a general iterative process by viscosity approximation method with parallel method to ap-proximate a common element of the set of solutions of a mixed equilibrium problem and of the set of common fixed points of a finite family of $k_i$-strict pseudo-contractions in a Hilbert space. We obtain a strong convergence theorem of the proposed iterative method for a finite family of $k_i$-strict pseudo-contractions to the unique solution of variational inequality which is the optimality condition for a minimization problem under some mild conditions imposed on parameters. The results obtained in this paper improve and extend the corresponding results announced by Liu (2009), Plubtieng-Panpaeng (2007), Takahashi-Takahashi (2007), Peng et al. (2009) and some well-known results in the literature.

Metal forming analysis using meshfree-enriched finite element method and mortar contact algorithm

  • Hu, Wei;Wu, C.T.
    • Interaction and multiscale mechanics
    • /
    • 제6권2호
    • /
    • pp.237-255
    • /
    • 2013
  • In this paper, a meshfree-enriched finite element method (ME-FEM) is introduced for the large deformation analysis of nonlinear path-dependent problems involving contact. In linear ME-FEM, the element formulation is established by introducing a meshfree convex approximation into the linear triangular element in 2D and linear tetrahedron element in 3D along with an enriched meshfree node. In nonlinear formulation, the area-weighted smoothing scheme for deformation gradient is then developed in conjunction with the meshfree-enriched element interpolation functions to yield a discrete divergence-free property at the integration points, which is essential to enhance the stress calculation in the stage of plastic deformation. A modified variational formulation using the smoothed deformation gradient is developed for path-dependent material analysis. In the industrial metal forming problems, the mortar contact algorithm is implemented in the explicit formulation. Since the meshfree-enriched element shape functions are constructed using the meshfree convex approximation, they pose the desired Kronecker-delta property at the element edge thus requires no special treatments in the enforcement of essential boundary condition as well as the contact conditions. As a result, this approach can be easily incorporated into a conventional displacement-based finite element code. Two elasto-plastic problems are studied and the numerical results indicated that ME-FEM is capable of delivering a volumetric locking-free and pressure oscillation-free solutions for the large deformation problems in metal forming analysis.

Nonlinear formulation and free vibration of a large-sag extensible catenary riser

  • Punjarat, Ong-art;Chucheepsakul, Somchai
    • Ocean Systems Engineering
    • /
    • 제11권1호
    • /
    • pp.59-81
    • /
    • 2021
  • The nonlinear formulation using the principle of virtual work-energy for free vibration of a large-sag extensible catenary riser in two dimensions is presented in this paper. A support at one end is hinged and the other is a free-sliding roller in the horizontal direction. The catenary riser has a large-sag configuration in the static equilibrium state and is assumed to displace with large amplitude to the motion state. The total virtual work of the catenary riser system involves the virtual strain energy due to bending, the virtual strain energy due to axial deformation, the virtual work done by the effective weight, and the inertia forces. The nonlinear equations of motion for two-dimensional free vibration in the Cartesian coordinate system is developed based on the difference between the Euler's equations in the static state and the displaced state. The linear and nonlinear stiffness matrices of the catenary riser are obtained and the eigenvalue problem is solved using the Galerkin finite element procedure. The natural frequencies and mode shapes are obtained. The results are validated with regard to the reference research addressing the accuracy and efficiency of the proposed nonlinear formulation. The numerical results for free vibration and the effect of the nonlinear behavior for catenary riser are presented.

A Model for Machine Fault Diagnosis based on Mutual Exclusion Theory and Out-of-Distribution Detection

  • Cui, Peng;Luo, Xuan;Liu, Jing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권9호
    • /
    • pp.2927-2941
    • /
    • 2022
  • The primary task of machine fault diagnosis is to judge whether the current state is normal or damaged, so it is a typical binary classification problem with mutual exclusion. Mutually exclusive events and out-of-domain detection have one thing in common: there are two types of data and no intersection. We proposed a fusion model method to improve the accuracy of machine fault diagnosis, which is based on the mutual exclusivity of events and the commonality of out-of-distribution detection, and finally generalized to all binary classification problems. It is reported that the performance of a convolutional neural network (CNN) will decrease as the recognition type increases, so the variational auto-encoder (VAE) is used as the primary model. Two VAE models are used to train the machine's normal and fault sound data. Two reconstruction probabilities will be obtained during the test. The smaller value is transformed into a correction value of another value according to the mutually exclusive characteristics. Finally, the classification result is obtained according to the fusion algorithm. Filtering normal data features from fault data features is proposed, which shields the interference and makes the fault features more prominent. We confirm that good performance improvements have been achieved in the machine fault detection data set, and the results are better than most mainstream models.