• Title/Summary/Keyword: Variation rate

Search Result 4,161, Processing Time 0.045 seconds

Analysis of Meteorological Factors when Fine Particulate Matters Deteriorate in Urban Areas of Jeju Special Self-Governing Province (제주특별자치도 도시지역 미세먼지 악화 시 기상요소 분석)

  • Sin, Jihwan;Jo, Sangman;Park, Sookuk
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.1
    • /
    • pp.36-58
    • /
    • 2022
  • In this study, the weather conditions corresponding to the increase in the environmental concentration of fine dust (PM10) and ultrafine dust (PM2.5) from 2001 to 2019 in Jeju and Seogwipo cities were analyzed. The increase in the levels of PM10 and PM2.5 was observed in the order: spring > winter > autumn > summer. In both cities, PM10 and PM2.5 levels increased more frequently during the day in spring and summer and at night in autumn and winter, with PM2.5 showing a greater increase in concentration than PM10. The air temperature and wind speed corresponding with increased levels of PM10 were higher than their respective seasonal averages in spring and winter, but lower in summer and autumn. Relative humidity was lower than the seasonal average during all seasons. The air temperature variation corresponding with increased levels of PM2.5 showed the same seasonal trend as that observed for PM10. The relative humidity was higher than the respective seasonal averages in spring and summer, and lower in winter. The wind speed was lower than the seasonal average in both the cities. When the PM10 and PM2.5 levels increased, the wind direction was from the north and the west during the day and varied according to the season at night. The rate of the increase in the PM10 concentration was the highest in both cities at the wind speed of 1.6 - 3.4 ms-1 during the day and night except during night in the summer. The highest concentration of PM2.5 was observed with the wind speed range of 1.6 - 3.4 ms-1 in Jeju, and 0.3 - 1.6 ms-1 in Seogwipo. The results of this study applied to urban and landscape planning will aid in the formulation of strategies to reduce the adverse effects of fine particular matter.

Effect of Soil Strength on Seedling Emergence of Rice and Barnyardgrasses in Direct Dry-Seeding (건답직파에서 토양경도가 벼와 피의 출아에 미치는 영향)

  • Kwon, Yong-Woong;Lee, Byun-Woo;Kim, Do-Soon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.4
    • /
    • pp.489-495
    • /
    • 1996
  • Seedling emergences of four rice varieties (Dongjinbyeo, Dadajo, Galsaekggarak-sharebyeo, and Italiconaverneco) and three barnyardgrass species(Echjnochloa oryzjcola, E. crus-gali var. crus gali E. crus-gali var. praticola) were evaluated in relation to soil strength. Soil strength was varied by compressing the entire volume of soil with a hydraulic jack so as to be 0.5, 1, 2, 3, 6kg /$\textrm{cm}^2$. Soil strength was measured with a penetrometer (Yamanaka type) and soil covering above the seed was 4cm deep. Experiments were conducted at two air temperature conditions of 17 and $25^{\circ}C$. At a soil strength of up to 2kg/$\textrm{cm}^2$, little or no decrease in seedling emergence occurred in all rice varieties and barnyardgrasses tested. Above that value, seedling emergence decreased progressively as the soil strength increased. The degree of decrease was greatest in Dongjinbyeo and smallest in Dadajo among tested rice varieties, and greatest in Echinochloa oryzicola among barnyardgrasses, being greater in barnyardgrasses than rice. Seedling emergence was delayed almost linearly as the soil strength increased. The delay was greatest in Dongjinbyeo among rice varieties and in Echinochloa oryzicola among barnyardgrasses. Mesocotyl length increased as soil strength increased up to 2 to 3kg / $\textrm{cm}^2$ in Dongjinbyeo and Dadajo in 17$^{\circ}C$ and $25^{\circ}C$, and up to 6kg/$\textrm{cm}^2$ in Galsaekggaraksharebyeo and Italiconaverneco in $25^{\circ}C$. Dongjinbyeo showed the least elongation of mesocotyl among rice varieties in any soil strength. The total length of mesotyl, first internode and incomplete leaf showed little variation with soil strength. The total length was longer than the 4cm covering depth in other varieties except Dongjinbyeo. This might have caused the lower emergence rate in Dongjinbyeo than other varieties in higher soil strength.

  • PDF

Behavioral Mechanism of Hybrid Model of Soil-nailing and Compression Anchor (쏘일네일링과 앵커가 결합된 하이브리드 공법의 거동 메커니즘)

  • Seo, Hyung-Joon;Kim, Hyun-Rae;Jeong, Nam-Soo;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.117-133
    • /
    • 2010
  • A hybrid system of soil-nailing and compression anchor is proposed in this paper; the system is composed of an anchor bar (installed at the tip) with two PC strands and a steel bar. After drilling a hole, installing proposed hybrid systems, and filling the hole with grouting material, prestress is applied to the anchor bar to restrict the deformation at the head and/or to prevent shallow slope failures. However, since the elongation rate of PC strand is much larger than that of steel bar, yield at the steel bar will occur much earlier than at the PC strand. It means that the yield load of the hybrid system will be overestimated if we simply add yield loads of the two - anchor bar and PC strands. It might be needed to try to match the yielding time of the two materials by applying the prestress to the anchor bar. It means that the main purpose of applying prestress to the anchor bar should be two-fold: to restrict the deformation at the nail head; and more importantly, to maximize the design load of the hybrid system by utilizing load transfer mechanism that transfers the prestress applied at the tip to the head through anchor bar. In order to study the load transfer mechanism in a systematic way, in-situ pullout tests were performed with the following conditions: soil-nailing only; hybrid system with the variation of prestress stresses from 0 kN to 196 kN. It was found that the prestress applied to the anchor system will induce the compressive stress to the steel bar; it will result in decrease in the slope of load-displacement curve of the steel bar. Then, the elongation at which the steel bar will reach yield stress might become similar to that of PC strands. By taking advantage of prestress to match elongations at yield, the pullout design load of the hybrid system can be increased up to twice that of the soil-nailing system.

Experimental investigation of the photoneutron production out of the high-energy photon fields at linear accelerator (고에너지 방사선치료 시 치료변수에 따른 광중성자 선량 변화 연구)

  • Kim, Yeon Su;Yoon, In Ha;Bae, Sun Myeong;Kang, Tae Young;Baek, Geum Mun;Kim, Sung Hwan;Nam, Uk Won;Lee, Jae Jin;Park, Yeong Sik
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.257-264
    • /
    • 2014
  • Purpose : Photoneutron dose in high-energy photon radiotherapy at linear accelerator increase the risk for secondary cancer. The purpose of this investigation is to evaluate the dose variation of photoneutron with different treatment method, flattening filter, dose rate and gantry angle in radiation therapy with high-energy photon beam ($E{\geq}8MeV$). Materials and Methods : TrueBeam $ST{\time}TM$(Ver1.5, Varian, USA) and Korea Tissue Equivalent Proportional Counter (KTEPC) were used to detect the photoneutron dose out of the high-energy photon field. Complex Patient plans using Eclipse planning system (Version 10.0, Varian, USA) was used to experiment with different treatment technique(IMRT, VMAT), condition of flattening filter and three different dose rate. Scattered photoneutron dose was measured at eight different gantry angles with open field (Field size : $5{\time}5cm$). Results : The mean values of the detected photoneutron dose from IMRT and VMAT were $449.7{\mu}Sv$, $2940.7{\mu}Sv$. The mean values of the detected photoneutron dose with Flattening Filter(FF) and Flattening Filter Free(FFF) were measured as $2940.7{\mu}Sv$, $232.0{\mu}Sv$. The mean values of the photoneutron dose for each test plan (case 1, case 2 and case 3) with FFF at the three different dose rate (400, 1200, 2400 MU/min) were $3242.5{\mu}Sv$, $3189.4{\mu}Sv$, $3191.2{\mu}Sv$ with case 1, $3493.2{\mu}Sv$, $3482.6{\mu}Sv$, $3477.2{\mu}Sv$ with case 2 and $4592.2{\mu}Sv$, $4580.0{\mu}Sv$, $4542.3{\mu}Sv$ with case 3, respectively. The mean values of the photoneutron dose at eight different gantry angles ($0^{\circ}$, $45^{\circ}$, $90^{\circ}$, $135^{\circ}$, $180^{\circ}$, $225^{\circ}$, $270^{\circ}$, $315^{\circ}$) were measured as $3.2{\mu}Sv$, $4.3{\mu}Sv$, $5.3{\mu}Sv$, $11.3{\mu}Sv$, $14.7{\mu}Sv$, $11.2{\mu}Sv$, $3.7{\mu}Sv$, $3.0{\mu}Sv$ at 10MV and as $373.7{\mu}Sv$, $369.6{\mu}Sv$, $384.4{\mu}Sv$, $423.6{\mu}Sv$, $447.1{\mu}Sv$, $448.0{\mu}Sv$, $384.5{\mu}Sv$, $377.3{\mu}Sv$ at 15MV. Conclusion : As a result, it is possible to reduce photoneutron dose using FFF mode and VMAT method with TrueBeam $ST{\time}TM$. The risk for secondary cancer of the patients will be decreased with continuous evaluation of the photoneutron dose.

Analysis of Variation for Parallel Test between Reagent Lots in in-vitro Laboratory of Nuclear Medicine Department (핵의학 체외검사실에서 시약 lot간 parallel test 시 변이 분석)

  • Chae, Hong Joo;Cheon, Jun Hong;Lee, Sun Ho;Yoo, So Yeon;Yoo, Seon Hee;Park, Ji Hye;Lim, Soo Yeon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.23 no.2
    • /
    • pp.51-58
    • /
    • 2019
  • Purpose In in-vitro laboratories of nuclear medicine department, when the reagent lot or reagent lot changes Comparability test or parallel test is performed to determine whether the results between lots are reliable. The most commonly used standard domestic laboratories is to obtain %difference from the difference in results between two lots of reagents, and then many laboratories are set the standard to less than 20% at low concentrations and less than 10% at medium and high concentrations. If the range is deviated from the standard, the test is considered failed and it is repeated until the result falls within the standard range. In this study, several tests are selected that are performed in nuclear medicine in-vitro laboratories to analyze parallel test results and to establish criteria for customized percent difference for each test. Materials and Methods From January to November 2018, the result of parallel test for reagent lot change is analyzed for 7 items including thyroid-stimulating hormone (TSH), free thyroxine (FT4), carcinoembryonic antigen (CEA), CA-125, prostate-specific antigen (PSA), HBs-Ab and Insulin. The RIA-MAT 280 system which adopted the principle of IRMA is used for TSH, FT4, CEA, CA-125 and PSA. TECAN automated dispensing equipment and GAMMA-10 is used to measure insulin test. For the test of HBs-Ab, HAMILTON automated dispensing equipment and Cobra Gamma ray measuring instrument are used. Separate reagent, customized calibrator and quality control materials are used in this experiment. Results 1. TSH [%diffrence Max / Mean / Median] (P-value by t-test > 0.05) C-1(low concentration) [14.8 / 4.4 / 3.7 / 0.0 ] C-2(middle concentration) [10.1 / 4.2 / 3.7 / 0.0] 2. FT4 [%diffrence Max / Mean / Median] (P-value by t-test > 0.05) C-1(low concentration) [10.0 / 4.2 / 3.9 / 0.0] C-2(high concentration) [9.6 / 3.3 / 3.1 / 0.0 ] 3. CA-125 [%diffrence Max / Mean / Median] (P-value by t-test > 0.05) C-1(middle concentration) [9.6 / 4.3 / 4.3 / 0.3] C-2(high concentration) [6.5 / 3.5 / 4.3 / 0.4] 4. CEA [%diffrence Max / Mean / median] (P-value by t-test > 0.05) C-1(low concentration) [9.8 / 4.2 / 3.0 / 0.0] C-2(middle concentration) [8.7 / 3.7 / 2.3 / 0.3] 5. PSA [%diffrence Max / Mean / Median] (P-value by t-test > 0.05) C-1(low concentration) [15.4 / 7.6 / 8.2 / 0.0] C-2(middle concentration) [8.8 / 4.5 / 4.8 / 0.9] 6. HBs-Ab [%diffrence Max / Mean / Median] (P-value by t-test > 0.05) C-1(middle concentration) [9.6 / 3.7 / 2.7 / 0.2] C-2(high concentration) [8.9 / 4.1 / 3.6 / 0.3] 7. Insulin [%diffrence Max / Mean / Median] (P-value by t-test > 0.05) C-1(middle concentration) [8.7 / 3.1 / 2.4 / 0.9] C-2(high concentration) [8.3 / 3.2 / 1.5 / 0.1] In some low concentration measurements, the percent difference is found above 10 to nearly 15 percent in result of target value calculated at a lower concentration. In addition, when the value is measured after Standard level 6, which is the highest value of reagents in the dispensing sequence, the result would have been affected by a hook effect. Overall, there was no significant difference in lot change of quality control material (p-value>0.05). Conclusion Variations between reagent lots are not large in immunoradiometric assays. It is likely that this is due to the selection of items that have relatively high detection rate in the immunoradiometric method and several remeasurements. In most test results, the difference was less than 10 percent, which was within the standard range. TSH control level 1 and PSA control level 1, which have low concentration target value, exceeded 10 percent more than twice, but it did not result in a value that was near 20 percent. As a result, it is required to perform a longer period of observation for more homogenized average results and to obtain laboratory-specific acceptance criteria for each item. Also, it is advised to study observations considering various variables.

Self-purification Mechanisms in Natural Environments of Korea: I. A Preliminary Study on the Behavior of Organic/Inorganic Elements in Tidal Flats and Rice Fields (자연 정화작용 연구: I. 갯벌과 농지 상층수중 유 ${\cdot}$ 무기 원소의 거동에 관한 예비 연구)

  • Choi, Kang-Won;Cho, Yeong-Gil;Choi, Man-Sik;Lee, Bok-Ja;Hyun, Jung-Ho;Kang, Jeong-Won;Jung, Hoi-Soo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.3
    • /
    • pp.195-207
    • /
    • 2000
  • Organic and inorganic characteristics including bacterial cell number, enzyme activity, nutrients, and heavy metals have been monitored in twelve acrylic experimental tanks for two weeks to estimate and compare self-purification capacities in two Korean wet-land environments, tidal flat and rice field, which are possibly different with the environments in other countries because of their own climatic conditions. FW tanks, filled with rice field soils and fresh water, consist of FW1&2 (with paddy), FW3&4 (without paddy), and FW5&6 (newly reclaimed, without paddy). SW tanks, filled with tidal flat sediments and salt water, are SW1&2 (with anoxic silty mud), SW3&4 (anoxic mud), and SW5&6 (suboxic mud). Contaminated solution, which is formulated with the salts of Cu, Cd, As, Cr, Pb, Hg, and glucose+glutamic acid, was spiked into the supernatent waters in the tanks. Nitrate concentrations in supernatent waters as well as bacterial cell numbers and enzyme activities of soils in the FW tanks (except FW5&6) are clearly higher than those in the SW tanks. Phosphate concentrations in the SW1 tank increase highly with time compared to those in the other SW tanks. Removal rates of Cu, Cd, and As in supematent waters of the FW5&6 tanks are most slow in the FW tanks, while the rates in SW1&2 are most fast in the SW tanks. The rate for Pb in the SW1&2 tanks is most fast in the SW tanks, and the rate for Hg in the FW5&6 tanks is most slow in the FW tanks. Cr concentrations decrease generally with time in the FW tanks. In the SW tanks, however, the Cr concentrations decrease rapidly at first, then increase, and then remain nearly constant. These results imply that labile organic materials are depleted in the FW5&6 tanks compared to the FW1&2 and FW3&4 tanks. Removal of Cu, Cd, As from the supernatent waters as well as slow removal rates of the elements (including Hg) are likely due to the combining of the elements with organic ligands on the suspended particles and subsequent removal to the bottom sediments. Fast removal rates of the metal ions (Cu, Cd, As) and rapid increase of phosphate concentrations in the SW1&2 tanks are possibly due to the relatively porous anoxic sediments in the SW1&2 tanks compared to those in the SW3&4 tanks, efficient supply of phosphate and hydrogen sulfide ions in pore wates to the upper water body, complexing of the metal ions with the sulfide ions, and subsequent removal to the bottom sediments. Organic materials on the particles and sulfide ions from the pore waters are the major factors constraining the behaviors of organic/inorganic elements in the supernatent waters of the experimental tanks. This study needs more consideration on more diverse organic and inorganic elements and experimental conditions such as tidal action, temperature variation, activities of benthic animals, etc.

  • PDF

Studies on the Rice Yield Decreased by Ground Water Irrigation and Its Preventive Methods (지하수 관개에 의한 수도의 멸준양상과 그 방지책에 관한 연구)

  • 한욱동
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.1
    • /
    • pp.3225-3262
    • /
    • 1974
  • The purposes of this thesis are to clarify experimentally the variation of ground water temperature in tube wells during the irrigation period of paddy rice, and the effect of ground water irrigation on the growth, grain yield and yield components of the rice plant, and, furthermore, when and why the plant is most liable to be damaged by ground water, and also to find out the effective ground water irrigation methods. The results obtained in this experiment are as follows; 1. The temperature of ground water in tube wells varies according to the location, year, and the depth of the well. The average temperatures of ground water in a tubewells, 6.3m, 8.0m deep are $14.5^{\circ}C$ and $13.1^{\circ}C$, respercively, during the irrigation period of paddy rice (From the middle of June to the end of September). In the former the temperature rises continuously from $12.3^{\circ}C$ to 16.4$^{\circ}C$ and in the latter from $12.4^{\circ}C$ to $13.8^{\circ}C$ during the same period. These temperatures are approximately the same value as the estimated temperatures. The temperature difference between the ground water and the surface water is approximately $11^{\circ}C$. 2. The results obtained from the analysis of the water quality of the "Seoho" reservoir and that of water from the tube well show that the pH values of the ground water and the surface water are 6.35 and 6.00, respectively, and inorganic components such as N, PO4, Na, Cl, SiO2 and Ca are contained more in the ground water than in the surface water while K, SO4, Fe and Mg are contained less in the ground water. 3. The response of growth, yield and yield components of paddy rice to ground water irrigation are as follows; (l) Using ground water irrigation during the watered rice nursery period(seeding date: 30 April, 1970), the chracteristics of a young rice plant, such as plant height, number of leaves, and number of tillers are inferior to those of young rice plants irrigated with surface water during the same period. (2) In cases where ground water and surface water are supplied separately by the gravity flow method, it is found that ground water irrigation to the rice plant delays the stage at which there is a maximum increase in the number of tillers by 6 days. (3) At the tillering stage of rice plant just after transplanting, the effect of ground water irrigation on the increase in the number of tillers is better, compared with the method of supplying surface water throughout the whole irrigation period. Conversely, the number of tillers is decreased by ground water irrigation at the reproductive stage. Plant height is extremely restrained by ground water irrigation. (4) Heading date is clearly delayed by the ground water irrigation when it is practised during the growth stages or at the reproductive stage only. (5) The heading date of rice plants is slightly delayed by irrigation with the gravity flow method as compared with the standing water method. (6) The response of yield and of yield components of rice to ground water irrigation are as follows: \circled1 When ground water irrigation is practised during the growth stages and the reproductive stage, the culm length of the rice plant is reduced by 11 percent and 8 percent, respectively, when compared with the surface water irrigation used throughout all the growth stages. \circled2 Panicle length is found to be the longest on the test plot in which ground water irrigation is practised at the tillering stage. A similar tendency as that seen in the culm length is observed on other test plots. \circled3 The number of panicles is found to be the least on the plot in which ground water irrigation is practised by the gravity flow method throughout all the growth stages of the rice plant. No significant difference is found between the other plots. \circled4 The number of spikelets per panicle at the various stages of rice growth at which_ surface or ground water is supplied by gravity flow method are as follows; surface water at all growth stages‥‥‥‥‥ 98.5. Ground water at all growth stages‥‥‥‥‥‥62.2 Ground water at the tillering stage‥‥‥‥‥ 82.6. Ground water at the reproductive stage ‥‥‥‥‥ 74.1. \circled5 Ripening percentage is about 70 percent on the test plot in which ground water irrigation is practised during all the growth stages and at the tillering stage only. However, when ground water irrigation is practised, at the reproductive stage, the ripening percentage is reduced to 50 percent. This means that 20 percent reduction in the ripening percentage by using ground water irrigation at the reproductive stage. \circled6 The weight of 1,000 kernels is found to show a similar tendency as in the case of ripening percentage i. e. the ground water irrigation during all the growth stages and at the reproductive stage results in a decreased weight of the 1,000 kernels. \circled7 The yield of brown rice from the various treatments are as follows; Gravity flow; Surface water at all growth stages‥‥‥‥‥‥514kg/10a. Ground water at all growth stages‥‥‥‥‥‥428kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥430kg/10a. Standing water; Surface water at all growh stages‥‥‥‥‥‥556kg/10a. Ground water at all growth stages‥‥‥‥‥‥441kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥450kg/10a. The above figures show that ground water irrigation by the gravity flow and by the standing water method during all the growth stages resulted in an 18 percent and a 21 percent decrease in the yield of brown rice, respectively, when compared with surface water irrigation. Also ground water irrigation by gravity flow and by standing water resulted in respective decreases in yield of 16 percent and 19 percent, compared with the surface irrigation method. 4. Results obtained from the experiments on the improvement of ground water irrigation efficiency to paddy rice are as follows; (1) When the standing water irrigation with surface water is practised, the daily average water temperature in a paddy field is 25.2$^{\circ}C$, but, when the gravity flow method is practised with the same irrigation water, the daily average water temperature is 24.5$^{\circ}C$. This means that the former is 0.7$^{\circ}C$ higher than the latter. On the other hand, when ground water is used, the daily water temperatures in a paddy field are respectively 21.$0^{\circ}C$ and 19.3$^{\circ}C$ by practising standing water and the gravity flow method. It can be seen that the former is approximately 1.$0^{\circ}C$ higher than the latter. (2) When the non-water-logged cultivation is practised, the yield of brown rice is 516.3kg/10a, while the yield of brown rice from ground water irrigation plot throughout the whole irrigation period and surface water irrigation plot are 446.3kg/10a and 556.4kg/10a, respectivelely. This means that there is no significant difference in yields between surface water irrigation practice and non-water-logged cultivation, and also means that non-water-logged cultivation results in a 12.6 percent increase in yield compared with the yield from the ground water irrigation plot. (3) The black and white coloring on the inside surface of the water warming ponds has no substantial effect on the temperature of the water. The average daily water temperatures of the various water warming ponds, having different depths, are expressed as Y=aX+b, while the daily average water temperatures at various depths in a water warming pond are expressed as Y=a(b)x (where Y: the daily average water temperature, a,b: constants depending on the type of water warming pond, X; water depth). As the depth of water warning pond is increased, the diurnal difference of the highest and the lowest water temperature is decreased, and also, the time at which the highest water temperature occurs, is delayed. (4) The degree of warming by using a polyethylene tube, 100m in length and 10cm in diameter, is 4~9$^{\circ}C$. Heat exchange rate of a polyethylene tube is 1.5 times higher than that or a water warming channel. The following equation expresses the water warming mechanism of a polyethylene tube where distance from the tube inlet, time in day and several climatic factors are given: {{{{ theta omega (dwt)= { a}_{0 } (1-e- { x} over { PHI v })+ { 2} atop { SUM from { { n}=1} { { a}_{n } } over { SQRT { 1+ {( n omega PHI) }^{2 } } } } LEFT { sin(n omega t+ { b}_{n }+ { tan}^{-1 }n omega PHI )-e- { x} over { PHI v }sin(n omega LEFT ( t- { x} over {v } RIGHT ) + { b}_{n }+ { tan}^{-1 }n omega PHI ) RIGHT } +e- { x} over { PHI v } theta i}}}}{{{{ { theta }_{$\infty$ }(t)= { { alpha theta }_{a }+ { theta }_{ w'} +(S- { B}_{s } ) { U}_{w } } over { beta } , PHI = { { cpDU}_{ omega } } over {4 beta } }}}} where $\theta$$\omega$; discharged water temperature($^{\circ}C$) $\theta$a; air temperature ($^{\circ}C$) $\theta$$\omega$';ponded water temperature($^{\circ}C$) s ; net solar radiation(ly/min) t ; time(tadian) x; tube length(cm) D; diameter(cm) ao,an,bn;constants determined from $\theta$$\omega$(t) varitation. cp; heat capacity of water(cal/$^{\circ}C$ ㎥) U,Ua; overall heat transfer coefficient(cal/$^{\circ}C$ $\textrm{cm}^2$ min-1) $\omega$;1 velocity of water in a polyethylene tube(cm/min) Bs ; heat exchange rate between water and soil(ly/min)

  • PDF

Current Status and Perspectives in Varietal Improvement of Rice Cultivars for High-Quality and Value-Added Products (쌀 품질 고급화 및 고부가가치화를 위한 육종현황과 전망)

  • 최해춘
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47
    • /
    • pp.15-32
    • /
    • 2002
  • The endeavors enhancing the grain quality of high-yielding japonica rice were steadily continued during 1980s-1990s along with the self-sufficiency of rice production and the increasing demands of high-quality rices. During this time, considerably great progress and success was obtained in development of high-quality japonica cultivars and quality evaluation techniques including the elucidation of interrelationship between the physicochemical properties of rice grain and the physical or palatability components of cooked rice. In 1990s, some high-quality japonica rice cultivars and special rices adaptable for food processing such as large kernel, chalky endosperm, aromatic and colored rices were developed and its objective preference and utility was also examined by a palatability meter, rapid-visco analyzer and texture analyzer, Recently, new special rices such as extremely low-amylose dull or opaque non-glutinous endosperm mutants were developed. Also, a high-lysine rice variety was developed for higher nutritional utility. The water uptake rate and the maximum water absorption ratio showed significantly negative correlations with the K/Mg ratio and alkali digestion value(ADV) of milled rice. The rice materials showing the higher amount of hot water absorption exhibited the larger volume expansion of cooked rice. The harder rices with lower moisture content revealed the higher rate of water uptake at twenty minutes after soaking and the higher ratio of maximum water uptake under the room temperature condition. These water uptake characteristics were not associated with the protein and amylose contents of milled rice and the palatability of cooked rice. The water/rice ratio (in w/w basis) for optimum cooking was averaged to 1.52 in dry milled rices (12% wet basis) with varietal range from 1.45 to 1.61 and the expansion ratio of milled rice after proper boiling was average to 2.63(in v/v basis). The major physicochemical components of rice grain associated with the palatability of cooked rice were examined using japonica rice materials showing narrow varietal variation in grain size and shape, alkali digestibility, gel consistency, amylose and protein contents, but considerable difference in appearance and texture of cooked rice. The glossiness or gross palatability score of cooked rice were closely associated with the peak, hot paste and consistency viscosities of viscosities with year difference. The high-quality rice variety "IIpumbyeo" showed less portion of amylose on the outer layer of milled rice grain and less and slower change in iodine blue value of extracted paste during twenty minutes of boiling. This highly palatable rice also exhibited very fine net structure in outer layer and fine-spongy and well-swollen shape of gelatinized starch granules in inner layer and core of cooked rice kernel compared with the poor palatable rice through image of scanning electronic microscope. Gross sensory score of cooked rice could be estimated by multiple linear regression formula, deduced from relationship between rice quality components mentioned above and eating quality of cooked rice, with high probability of determination. The $\alpha$-amylose-iodine method was adopted for checking the varietal difference in retrogradation of cooked rice. The rice cultivars revealing the relatively slow retrogradation in aged cooked rice were IIpumbyeo, Chucheongyeo, Sasanishiki, Jinbubyeo and Koshihikari. A Tonsil-type rice, Taebaegbyeo, and a japonica cultivar, Seomjinbyeo, showed the relatively fast deterioration of cooked rice. Generally, the better rice cultivars in eating quality of cooked rice showed less retrogradation and much sponginess in cooled cooked rice. Also, the rice varieties exhibiting less retrogradation in cooled cooked rice revealed higher hot viscosity and lower cool viscosity of rice flour in amylogram. The sponginess of cooled cooked rice was closely associated with magnesium content and volume expansion of cooked rice. The hardness-changed ratio of cooked rice by cooling was negatively correlated with solids amount extracted during boiling and volume expansion of cooked rice. The major physicochemical properties of rice grain closely related to the palatability of cooked rice may be directly or indirectly associated with the retrogradation characteristics of cooked rice. The softer gel consistency and lower amylose content in milled rice revealed the higher ratio of popped rice and larger bulk density of popping. The stronger hardness of rice grain showed relatively higher ratio of popping and the more chalky or less translucent rice exhibited the lower ratio of intact popped brown rice. The potassium and magnesium contents of milled rice were negatively associated with gross score of noodle making mixed with wheat flour in half and the better rice for noodle making revealed relatively less amount of solid extraction during boiling. The more volume expansion of batters for making brown rice bread resulted the better loaf formation and more springiness in rice breed. The higher protein rices produced relatively the more moist white rice bread. The springiness of rice bread was also significantly correlated with high amylose content and hard gel consistency. The completely chalky and large grain rices showed better suitability far fermentation and brewing. The glutinous rice were classified into nine different varietal groups based on various physicochemical and structural characteristics of endosperm. There was some close associations among these grain properties and large varietal difference in suitability to various traditional food processing. Our breeding efforts on improvement of rice quality for high palatability and processing utility or value-adding products in the future should focus on not only continuous enhancement of marketing and eating qualities but also the diversification in morphological, physicochemical and nutritional characteristics of rice grain suitable for processing various value-added rice foods.ice foods.

Discovering Promising Convergence Technologies Using Network Analysis of Maturity and Dependency of Technology (기술 성숙도 및 의존도의 네트워크 분석을 통한 유망 융합 기술 발굴 방법론)

  • Choi, Hochang;Kwahk, Kee-Young;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.101-124
    • /
    • 2018
  • Recently, most of the technologies have been developed in various forms through the advancement of single technology or interaction with other technologies. Particularly, these technologies have the characteristic of the convergence caused by the interaction between two or more techniques. In addition, efforts in responding to technological changes by advance are continuously increasing through forecasting promising convergence technologies that will emerge in the near future. According to this phenomenon, many researchers are attempting to perform various analyses about forecasting promising convergence technologies. A convergence technology has characteristics of various technologies according to the principle of generation. Therefore, forecasting promising convergence technologies is much more difficult than forecasting general technologies with high growth potential. Nevertheless, some achievements have been confirmed in an attempt to forecasting promising technologies using big data analysis and social network analysis. Studies of convergence technology through data analysis are actively conducted with the theme of discovering new convergence technologies and analyzing their trends. According that, information about new convergence technologies is being provided more abundantly than in the past. However, existing methods in analyzing convergence technology have some limitations. Firstly, most studies deal with convergence technology analyze data through predefined technology classifications. The technologies appearing recently tend to have characteristics of convergence and thus consist of technologies from various fields. In other words, the new convergence technologies may not belong to the defined classification. Therefore, the existing method does not properly reflect the dynamic change of the convergence phenomenon. Secondly, in order to forecast the promising convergence technologies, most of the existing analysis method use the general purpose indicators in process. This method does not fully utilize the specificity of convergence phenomenon. The new convergence technology is highly dependent on the existing technology, which is the origin of that technology. Based on that, it can grow into the independent field or disappear rapidly, according to the change of the dependent technology. In the existing analysis, the potential growth of convergence technology is judged through the traditional indicators designed from the general purpose. However, these indicators do not reflect the principle of convergence. In other words, these indicators do not reflect the characteristics of convergence technology, which brings the meaning of new technologies emerge through two or more mature technologies and grown technologies affect the creation of another technology. Thirdly, previous studies do not provide objective methods for evaluating the accuracy of models in forecasting promising convergence technologies. In the studies of convergence technology, the subject of forecasting promising technologies was relatively insufficient due to the complexity of the field. Therefore, it is difficult to find a method to evaluate the accuracy of the model that forecasting promising convergence technologies. In order to activate the field of forecasting promising convergence technology, it is important to establish a method for objectively verifying and evaluating the accuracy of the model proposed by each study. To overcome these limitations, we propose a new method for analysis of convergence technologies. First of all, through topic modeling, we derive a new technology classification in terms of text content. It reflects the dynamic change of the actual technology market, not the existing fixed classification standard. In addition, we identify the influence relationships between technologies through the topic correspondence weights of each document, and structuralize them into a network. In addition, we devise a centrality indicator (PGC, potential growth centrality) to forecast the future growth of technology by utilizing the centrality information of each technology. It reflects the convergence characteristics of each technology, according to technology maturity and interdependence between technologies. Along with this, we propose a method to evaluate the accuracy of forecasting model by measuring the growth rate of promising technology. It is based on the variation of potential growth centrality by period. In this paper, we conduct experiments with 13,477 patent documents dealing with technical contents to evaluate the performance and practical applicability of the proposed method. As a result, it is confirmed that the forecast model based on a centrality indicator of the proposed method has a maximum forecast accuracy of about 2.88 times higher than the accuracy of the forecast model based on the currently used network indicators.

Effects of Evaporative Water-loss from Cultural Pots on Growth of Pot-grown Ornamental Plants (화분(花盆)의 수분증발(水分蒸發)이 분식화훼류(盆植花卉類)의 생육(生育)에 미치는 영향(影響))

  • Suh, Youn-gkyo
    • Korean Journal of Agricultural Science
    • /
    • v.4 no.2
    • /
    • pp.317-343
    • /
    • 1977
  • This study was carried out to obtain the informations about evaporation from pot, soil temperature and soil atmosphere composition in pot, and the effect on the growth of nine ornamental species using seven different containers. The investigated containers were clay pot(CP), clay pot painted in green(CP-P), varnished clay pot(CP-V), polyethylene film inserting in clay pot(CP-PI), clay pot mulched with black polyethylene film(CP-PM), porcelain pot(POP), and plastic pot(PLP). Nine ornamental species were balsam(Impatiens balsamina), chrysanthemum(Chrysanthemum morifolium), cosmos(Cosmos bipinatus), English ivy(Hedera helix), geranium(Pelargonium zonale), kochia(Kochia scoparia var. trichophila), marigold(Tagetes patula), ornamental kale(Brassica oleraceae var. acephala), and salvia (Salvia splendens). The results obtained are summarized as follows: 1. Dry weight of all tested species grown in PLP, POP, CP-P, CP-V and CP-PI was heavier than that of CP. 2. Plant height in nine tested species grown in PLP, POP, CP-P, CP-V, and CP-PI was taller than that of CP. 3. Geranium grown in PLP, POP, CP-P, and CP-V gave more number of leaf than that of CP. 4. The number of flower in balsam grown in PLP, POP, CP-P, CP-V and CP-PI was more than that of CP. The result from marigold was very similar to this tendency. Spike length and floret number in salvia gave the same tendency, but its spike number was not different among containers used. 5. The average diurnal evaporation from PLP and POP was about 43% of that of CP. About two third of total evaporation from CP was through pot wall. 6. The evaporation rate from the slowest to the highest was PLP, POP, CP-P, CP-V, CP-PI, CP-PM and CP. Containers inhibiting evaporation through pot wall hold more soil moisture than CP from one day after water supply. 7. The more evaporative water-loss from containers gave the lower soil temperature. The variation of soil temperature among containers was higher during the day than the night. 8. The $O_2$ concentration of soil atmosphere in CP was higher than that of nonporous containers, and the difference between them was 0.40-1.12%. The range of the $O_2$ concentration 17.95~19.62%. The $CO_2$ concentration of soil atmosphere in CP was lower than that of nonporous containers, and its range was 0.59-1.76%. This deviation in soil atmosphere composition did not influenced on the growth of plants. 9. There was a possitive correlation between the amount of soil water and the plant growth. 10. Plant grown on CP gave more total nitrogen content in top growth than that on PLP. C/N ratio was somewhat low in plant on CP. From the above results, $O_2$ and $CO_2$ concentration in soil atmosphere did not gave enough deviation to the extent which affect the plant growth. The effect of soil moisture on the plant growth using different containers was the far-most significant factor from this investigation. Therefore, it was obious that the utilization of the nonporous container might save the cost for water supply and reduce the production cost of the pot-grown ornamental plant in Korea eventually.

  • PDF