• 제목/요약/키워드: Variable-speed motor drives

검색결과 89건 처리시간 0.02초

초고속 유도전동기 구동을 위한 신경회로망 제어기 설계 (Design of Neural Network Controllers for High Speed Induction Motor Drives)

  • 김윤호;이병순;성세진
    • 전력전자학회논문지
    • /
    • 제2권1호
    • /
    • pp.39-45
    • /
    • 1997
  • 초고속 전동기 구동 시스템을 위하여 간접 신경회로망 제어기를 제안하였다. 고속의 가변 전동기구동에서의 속도응답은 긴 정착시간과 높은 오버슈트의 영향에 있게 되므로 고성능을 위하여 신경회로망 제어기와 신경회로망 에뮬레이터로 구성된 제어기를 사용하였으며, 신경회로망 에뮬레이터는 고속 전동기의 정수와 특성을 동정하는데 사용하였고, 제어기의 학습은 접속강도가 백프로퍼게이션에 의해 조절되도록 하였다. 그리고 시뮬레이션과 실험을 통하여 제안된 시스템의 특성과 장점을 확인하였다.

  • PDF

가변 링크전압에 의한 센서리스 유도전동기의 저속운전 성능개선 (Impoved Performance of Sensorless Induction Motor Drive in Low Speed Range Using Variable Link Voltage)

  • 김상균;권영안
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권2호
    • /
    • pp.90-98
    • /
    • 2004
  • Variable-speed drives are being continually innovated. Recently, sensorless induction motor drives have been much studied due to several advantages. Most sensorless algorithms are based on the mathematical modeling of motors, and all the information is obtained from the monitored voltages and currents. Therefore, the accuracy of such variables largely affects the performance of a sensorless induction motor drive. However, the output voltage of the SVPWM-VSI which is widely used in a sensorless induction motor drive has a considerable error, especially in a low speed range. This paper proposes a variation of the dc link voltage as a high-performance strategy for overcoming the above problem. The proposed strategy leads to an improved resolution of the output voltage of the SVPWM-VSI in a sensorless induction motor drive. Simulation and experiment have been performed for the verification of the proposed strategy.

Dynamic Performance Analysis for Different Vector-Controlled CSI- Fed Induction Motor Drives

  • Mark, Arul Prasanna;Irudayaraj, Gerald Christopher Raj;Vairamani, Rajasekaran;Mylsamy, Kaliamoorthy
    • Journal of Power Electronics
    • /
    • 제14권5호
    • /
    • pp.989-999
    • /
    • 2014
  • High-performance Current Source Inverter (CSI)-fed, variable speed alternating current drives are prepared for various industrial applications. CSI-fed Induction Motor (IM) drives are managed by using different control methods. Noteworthy methods include scalar Control (V/f), Input-Output Linearization (IOL) control, Field-Oriented Control (FOC), and Direct Torque Control (DTC). The objective of this work is to compare the dynamic performance of the aforementioned drive control methods for CSI-fed IM drives. The dynamic performance results of the proposed drives are individually analyzed through sensitivity tests. The tests selected for the comparison are step changes in the reference speed and torque of the motor drive. The operation and performance of different vector control methods are verified through simulations with MATLAB/Simulink and experimental results.

가변속 전동기구동을 위한 새로운 반포화 PI 제어기 (New Anti-windup PI Control for Variable-Speed Motor Drives)

  • 신휘범;이정훈;정세교
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1997년도 전력전자학술대회 논문집
    • /
    • pp.357-363
    • /
    • 1997
  • The windup phenomenon appears and results in the performance degradation when the PI controller output is saturated. A new anti-windup PI controller is proposed to improve the control performance of the variable-speed motor drives and it is experimentally applied to the speed control of a vector-controlled induction motor driven by a pulse width modulated(PWM) voltage source inverter (VSI). The integral state is separately controlled corresponding to whether the PI controller output is saturated or not. The experimental results show that the speed response has the much improved performances such as small overshoot and fast settling time over the conventional anti-windup technique. Although the operating speed command is changed, the similar control performance can be obtained by using the PI gains selected in the linear region.

  • PDF

Characteristic of Induction Motor Drives Fed by Three Leg and Five Leg Inverters

  • Talib, Md. Hairul Nizam;Ibrahim, Zulkifilie;Rahim, Nasrudin Abd.;Hasim, Ahmad Shukri Abu
    • Journal of Power Electronics
    • /
    • 제13권5호
    • /
    • pp.806-813
    • /
    • 2013
  • This paper aims to compare the performance of three phase induction motor drives using Five Leg Inverter (FLI) and Three Leg Inverter (TLI) configurations. An Indirect Field Oriented Control (IFOC) method using a TLI is well established and incorporated for high performance speed drives in various industries. The FLI dual motor drive system on the other hand shows good workability in the independent control of two induction motor drives simultaneously. In this experiment, the IFOC method is utilized for both drive systems, and Space Vector Pulse Width Modulation (SVPWM) is used to generate pulses for both inverters. For the FLI, the Double Zero Sequence (DZS) Injection technique is used to generate the modulation signal. The complete experiment setup is done by using a DSpace 1103 controller board. The individual motor performances are analyzed using similar schemes, equipment setups and controller parameter values. The results show similar speed performance response capability between the single motor operation using a TLI system and the two motor operation using a FLI system based on the variable speed range either in forward or reverse operation. They also show similar load rejection abilities. However, the single motor with a TLI has a better power quality aspect such as ripple current and total harmonics distortion (THD).

개선된 슬라이딩 모드 관측기에 의한 유도전동기의 센서리스 속도제어 (Sensorless Speed Control of Induction Motor by an Improved Sliding Mode Observer)

  • 장민영;김상균;권영안
    • 전기학회논문지
    • /
    • 제57권9호
    • /
    • pp.1552-1554
    • /
    • 2008
  • Recently, sensorless induction motor drives have been much studied due to several advantages. Sensorless drives eliminate the additional mounting space, increase the reliability in harsh environments, and reduce the cost of a motor. This paper investigates an improved sliding mode observer for the sensorless speed control of an induction motor. The proposed control strategy is the sliding mode observer with a variable boundary layer for a low-chattering and fast-response control. The proposed sensorless-algorithm is verified through the simulation and experimentation.

Voltage Doubler를 이용한 4-스위치 3상 BLDC 전동기 구동 알고리즘 (Driving Algorithm on Three Phase BLDC Motor Applied 4-Switch using Voltage Doubler)

  • 윤용호;이정석;원충연
    • 전기학회논문지P
    • /
    • 제60권1호
    • /
    • pp.48-52
    • /
    • 2011
  • Over the years, traditionally, six-switch three-phase inverters have been widely utilized for variable speed alternating current motor drives. Recently, some efforts have been made on the application of four-switch three phase inverter for uninterruptible power supply and variable speed drives. This is due to some advantages of the four-switch three phase inverter over the conventional six-switch three-phase inverters such as reduced price due to reduction in number of switches, reduced switching losses, reduced number of interface circuits to supply logic signals for the switches, simpler control algorithms to generate logic signals, less chances of destroying the switches due to lesser interaction among switches, and less real-time computational burden. However such as slow di/dt and speed limitation, are the inherent characteristics and main drawbacks of the four-switch configuration. Those problems can be overcome in conjugation with Voltage-doublers which has additional advantage, such as unity power factor correction.

MRAS Based Sensorless Control of a Series-Connected Five-Phase Two-Motor Drive System

  • Khan, M. Rizwan;Iqbal, Atif
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권2호
    • /
    • pp.224-234
    • /
    • 2008
  • Multi-phase machines can be used in variable speed drives. Their applications include electric ship propulsion, 'more-electric aircraft' and traction applications, electric vehicles, and hybrid electric vehicles. Multi-phase machines enable independent control of a few numbers of machines that are connected in series in a particular manner with their supply being fed from a single voltage source inverter(VSI). The idea was first implemented for a five-phase series-connected two-motor drive system, but is now applicable to any number of phases more than or equal to five-phase. The number of series-connected machines is a function of the phase number of VSI. Theoretical and simulation studies have already been reported for number of multi-phase multi-motor drive configurations of series-connection type. Variable speed induction motor drives without mechanical speed sensors at the motor shaft have the attractions of low cost and high reliability. To replace the sensor, information concerning the rotor speed is extracted from measured stator currents and voltages at motor terminals. Open-loop estimators or closed-loop observers are used for this purpose. They differ with respect to accuracy, robustness, and sensitivity against model parameter variations. This paper analyses operation of an MRAS estimator based sensorless control of a vector controlled series-connected two-motor five-phase drive system with current control in the stationary reference frame. Results, obtained with fixed-voltage, fixed-frequency supply, and hysteresis current control are presented for various operating conditions on the basis of simulation results. The purpose of this paper is to report the first ever simulation results on a sensorless control of a five-phase two-motor series-connected drive system. The operating principle is given followed by a description of the sensorless technique.

Low-Cost Position Sensorless Switched Relutance Motor Drive Using a Single-Controllable Switch Converter

  • Yang, Hyong-Yeol;Kim, Jae-Hyuck;Krishnan, R.
    • Journal of Power Electronics
    • /
    • 제12권1호
    • /
    • pp.75-82
    • /
    • 2012
  • Elimination of rotor position sensors mechanically coupled with the rotor shaft is attractive to variable speed drives primarily due to increased system reliability and cost reduction. In this regard, search for a simple and robust position sensorless control has been intensified in past few years specifically for low-cost, high-volume applications such as home appliances. This paper describes a new parameter insensitive position sensorless control for switched reluctance motor (SRM) drives satisfying such a need in this market segment. Two consecutive switch-on times of the controllable switch in hysteresis current control are compared to estimate the rotor position and speed. The proposed sensorless control algorithm is very simple to implement since it does not depend on extensive computation or any additional hardware. In addition, the proposed method is robust in that its dynamic performance is least affected by system parameter variations. The proposed approach is demonstrated on a single-controllable-switch-converter-driven SRM with two-phases that lends itself to a system with low cost and compact packaging which comes close to the intended applications. Analysis and simulation results followed by experimental verification are presented to demonstrate the feasibility of the proposed sensorless control method.

Anti-windup Integral-Proportional Controller for Variable-Speed Motor Drives

  • Park, Jong-Gyu;Chung, Jae-ho;Shin, Hwi-Beom
    • Journal of Power Electronics
    • /
    • 제2권2호
    • /
    • pp.130-138
    • /
    • 2002
  • The windup phenomenon appears and degrades control performance when a controller with integrating action is used and plant input is limited. An anti-windup integal-proportional(IP) controller is proposed for the variable-speed moter drives and it is experimentally applied to the speed control of a vector-controlled induction moter driven by a pulse width modulated (PWM) voltage source inverter (VSI). The consistency range of the IP controller is firstly derived and the intergal state is controlled to salisfy always the consistency range according to whether the the controller output is saturated or not. Although the operating condition like moter load or speed command is changed under the limited plant input, It is expermentally verified that the speed response has much improved performance, such as no overshoot and fast settling time, and the maximmum plant input is also effectively utilized.