• Title/Summary/Keyword: Variable speed motor

Search Result 490, Processing Time 0.028 seconds

Speed Control of Switch Reluctance Motor using Modified Anti-Windup PI Controller and Braking Mode (Modified Anti-Windup PI 제어기와 Braking Mode를 이용한 SRM의 속도 제어)

  • Kim, Hak-Sung;Kim, Yuen-Chung;Kim, Jae-Moon;Yoon, Yong-Ho;Won, Chung-Yuen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.6
    • /
    • pp.33-39
    • /
    • 2007
  • In this paper, novel topology for fast response of various loads is proposed. The windup phenomenon appears and results in performance degradation when the PI controller output is saturated. A new anti-windup PI controller is proposed to improve the control performance of variable speed motor drives, and it is experimentally applied to the speed control of a hysteresis current-controlled SRM driven by an asymmetry bridge converter. The experimental results show that the speed response has much improved performance, such as small overshoot and fast settling time, over the conventional PI control.

Mechatronic Control Model of the Wind Turbine with Transmission to Split Power

  • Zhang Tong;Li Wenyong;Du Yu
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.533-541
    • /
    • 2005
  • In this paper, a wind turbine with power splitting transmission, which is realized through a novel three-shaft planetary, is presented. The input shaft of the transmission is driven by the rotor of the wind turbine, the output shaft is connected to the grid via the main generator (asynchronous generator), and the third shaft is driven by a control motor with variable speed. The dynamic models of the sub systems of this wind turbine, e.g. the rotor aerodynamics, the drive train dynamics and the power generation unit dynamics, were given and linearized at an operating point. These sub models were integrated in a multidisciplinary dynamic model, which is suitable for control syntheses to optimize the utilization of wind energy and to reduce the excessive dynamic loads. The important dynamic behaviours were investigated and a wind turbine with a soft main shaft was recommend.

Method for Removing Reaching Phase in Variable Structure Control Systems Using Bell Type Switching Function (Bell형 스위칭 함수를 이용한 가변구조제어계의 도달기간 제거방법)

  • 김윤업;윤종일;곽군평
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.8
    • /
    • pp.1269-1275
    • /
    • 2002
  • This paper presents a new method for removing reaching phase in variable structure control systems using Bell type switching function. By proposed method, during the entire control process reaching phase is removed. For effective speed control of trapezoidal type brushless DC motor, a time varying switching function based speed controller is developed as illustration.

Performance Analysis on the Variable Speed Scroll Compressor with Operating Conditions (가변속 스크롤 압축기의 운전조건의 변화에 따른 성능 해석)

  • 박홍희;박윤철;김용찬
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.7
    • /
    • pp.649-658
    • /
    • 2000
  • Thermodynamic modeling of low-pressure scroll compressor was developed by combining continuity and energy conservation equation. Suction gas heating was considered using energy balance inside the low pressure shell. Pressure, temperature and mass of refrigerant-22 as a function of orbiting angle were calculated by solving the governing equations using fourth order Rung-Kutta scheme. Motor efficiency was taken by experiments with a variation of frequency. The developed model was applied to the analysis of an inverter driven scroll compressor with a variation of frequency, pressure ratio and operating conditions. The model was verified with the experimental results at the same operating conditions. The developed model was adequate to predict performance of the inverter driven scroll compressor as a function of operating conditions. Calculated parameters from the model were discharge temperature, mass flow rate, power input, COP, and thermodynamic properties with respect to orbiting angle. To enhance the performance of a scroll compressor, it is essential to diminish leakage at low frequency level and improve the mechanical efficiency at high frequency level.

  • PDF

Design of Nonlinear PID Controller Based on Immune Feedback Mechanism (면역 피드백 메카니즘에 기초한 비선형 PID 제어기 설계)

  • Park Jin-Hyun;Choi Young-Kiu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.3
    • /
    • pp.134-141
    • /
    • 2003
  • PID controllers with constant gains have been widely used in various control systems due to its powerful performance and easy implementation. But it is difficult to have uniformly good control performance in all operating conditions. In this paper, we propose a nonlinear variable PR controller with immune feedback mechanism. An immune feedback mechanism is based on the functioning of biological T-cells, they include both an active term, which controls response speed. and an inhibitive term, which controls stabilization effect. Therefore, the proposed nonlinear PID controller is based on immune responses of biological. immune feedback mechanism which is the cell mediated immunity and In order to choose the optimal nonlinear PID controller games, we also propose the tuning algorithm of nonlinear function parameter in immune feedback mechanism. To verify performance of the proposed algorithm, the speed control of nonlinear DC motor are performed. Front the simulation results, we have found that the proposed algorithm is more superior to the conventional constant fain PID controller.

Method for Removing Reaching Phase in Variable Structure Systems Using Bell Type Switching Function (Bell형 스위칭 함수를 이용한 가변구조제어계의 도달기간 제거방법)

  • Kim, Yun-Up;Park, Tae-Yung;Kwak, Gun-Pyong;Park, Seung-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.57-60
    • /
    • 2001
  • This paper presents a new method for removing reaching phase in variable structure control systems using Bell type switching function. By proposed method, during the entire control process reaching phase is removed. For effective speed control of trapezoidal type brushless DC motor, a time varying switching function based speed controller is developed as illustration.

  • PDF

A study of Energy Saving Hydraulic Cylinder System Using Hydraulic Transformer (유압 트랜스포머를 이용한 유압 실린더의 에너지 절감에 관한 연구)

  • Ahn, Kyoung-Kwan;Lee, Min-Su;Cho, Yong-Rae;Yoon, Ju-Hyeon;Jo, Woo-Keun;Yoon, Hong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1075-1080
    • /
    • 2007
  • In order to reduce energy consumption, secondary controlled system has been applied to many types of equipments. In lifting equipments or press machines using hydraulic cylinder, a hydraulic transformer is used as a control component instead of a valve for motion control and a component for recovering potential energy of load. The transformer is a combination of a variable displacement pump/motor as a secondary controlled element and a fixed displacement pump/motor. In this paper the effect of transformer is studied. Multiple closed loop controllers with displacement feedback of variable pump/motor, speed feedback and position feedback of cylinder are used. The efficiency and energy consumption when cylinder is driven up and down is calculated by simulation. Simulation results show that considerable energy saving is achieved by choosing load ratio, circuit type and supply pressure.

  • PDF

A PMSM Driven Electric Scooter System with a V-Belt Continuously Variable Transmission Using a Novel Hybrid Modified Recurrent Legendre Neural Network Control

  • Lin, Chih-Hong
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.1008-1027
    • /
    • 2014
  • An electric scooter with a V-belt continuously variable transmission (CVT) driven by a permanent magnet synchronous motor (PMSM) has a lot of nonlinear and time-varying characteristics, and accurate dynamic models are difficult to establish for linear controller designs. A PMSM servo-drive electric scooter controlled by a novel hybrid modified recurrent Legendre neural network (NN) control system is proposed to solve difficulties of linear controllers under the occurrence of nonlinear load disturbances and parameters variations. Firstly, the system structure of a V-belt CVT driven electric scooter using a PMSM servo drive is established. Secondly, the novel hybrid modified recurrent Legendre NN control system, which consists of an inspector control, a modified recurrent Legendre NN control with an adaptation law, and a recouped control with an estimation law, is proposed to improve its performance. Moreover, the on-line parameter tuning method of the modified recurrent Legendre NN is derived according to the Lyapunov stability theorem and the gradient descent method. Furthermore, two optimal learning rates for the modified recurrent Legendre NN are derived to speed up the parameter convergence. Finally, comparative studies are carried out to show the effectiveness of the proposed control scheme through experimental results.

Parameter Estimation for Vector Control of Induction Motors without Speed Sensors (속도센서 없는 유도전동기 백터제어 시스템의 파라메타 추정)

  • Kim, Sang-Uk;Kwon, Young-Gil;Kim, Young-Jo;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2088-2090
    • /
    • 1997
  • This paper consists of the speed sensorless vector control of induction motors with the estimation of rotor resistance. In the application of variable-speed induction motor drives, if an inaccurate rotor resistance is used because the rotor resistance can change due to skin effects and temperature variables, it is difficult to achieve a collect field orientation. In this paper, to overcome these difficulties adaptive algorithm is designed for rotor resistance identification. The proposed adaptive algorithm for rotor resistance estimation in the synchronous reference frame is applied by sliding mode current controller satisfing persistent excitation(PE) condition. Adaptive flux observer is here used for the purpose of estimating rotor flux and speed in the speed sensorless scheme. Computer simulations are carried out to verify the validity of the proposed algorithm.

  • PDF

Speed Sensorless Vector Control of Induction Motors with the Identification of Rotor Resistance (회전자저항동정을 갖는 유도전동기의 속도센서리스 벡터제어)

  • Kim, Sang-Uk;Choi, Se-Wan;Kim, Young-Jo;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.510-513
    • /
    • 1996
  • This paper consists of the speed sensorless vector control of induction motors with the estimation of rotor resistance. In the application of variable-speed induction motor drives, if an inaccurate rotor resistance is used because the rotor resistance can change due to skin effects and temperature variables, it is difficult to achieve a collect field orientation. In this paper, to overcome these difficulties adaptive algorithm is designed for rotor resistance identification at the beginning of the transient state. And an adaptive flux observer is used for the purpose of estimating rotor flux and speed in the speed sensorless scheme. Computer simulations are carried out to verity the validity of the proposed algorithm.

  • PDF