• 제목/요약/키워드: Variable selection

검색결과 885건 처리시간 0.019초

의사결정나무에서 순서형 분리변수 선택에 관한 연구 (Ordinal Variable Selection in Decision Trees)

  • 김현중
    • 응용통계연구
    • /
    • 제19권1호
    • /
    • pp.149-161
    • /
    • 2006
  • CART로 대표되는 의사결정나무의 알고리즘에서 가장 중요한 요소는 분리변수의 선택방법이다. 대부분의 알고리즘은 변수의 형태가 연속형인지, 혹은 명목형(nominal)인지에 따라 별개의 변수선택방법을 적용한다. 하지만 변수의 형태가 순서형(ordinal)인 경우에는 그 변수를 연속형으로 취급하여 연속형 변수선택방법을 적용하는 것이 대부분이다. 이것은 CART와 같은 Greedy탐색을 이용하는 방법에는 문제점이 발생하지 않는다. 하지만 Greedy탐색의 약점을 보완하기 위해 통계이론을 이용하여 개발된 최근의 방법들에는 최선의 대처방법이 아니다. 따라서 본 연구에서는 의사결정 나무에서 분리변수를 선택하는데 있어서 비모수적 접근 방법인 Clamor-von Mises 검정을 이용한 방법을 순서형 변수에 사용하는 것을 제안하고, CART, C4.5, QUEST, CRUISE등 기존 알고리즘과 본 연구에서 제안하는 방법의 순서형 변수 선택력을 비교하였다. 모의실험의 결과, Clamor-von Mises 검정을 이용한 변수선택방법은 순서형 변수의 분류력을 기존 방법들에 비해 더 정확히 예측하는 좋은 성과를 보여주었다.

Robust varying coefficient model using L1 regularization

  • Hwang, Changha;Bae, Jongsik;Shim, Jooyong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권4호
    • /
    • pp.1059-1066
    • /
    • 2016
  • In this paper we propose a robust version of varying coefficient models, which is based on the regularized regression with L1 regularization. We use the iteratively reweighted least squares procedure to solve L1 regularized objective function of varying coefficient model in locally weighted regression form. It provides the efficient computation of coefficient function estimates and the variable selection for given value of smoothing variable. We present the generalized cross validation function and Akaike information type criterion for the model selection. Applications of the proposed model are illustrated through the artificial examples and the real example of predicting the effect of the input variables and the smoothing variable on the output.

부분선형모형에서 LARS를 이용한 변수선택 (Variable selection in partial linear regression using the least angle regression)

  • 서한손;윤민;이학배
    • 응용통계연구
    • /
    • 제34권6호
    • /
    • pp.937-944
    • /
    • 2021
  • 본 연구는 부분선형모형에서 변수선택의 문제를 다룬다. 부분선형모형은 평활화모수 추정과 같은 비모수 추정과 선형설명변수에 대한 추정의 문제를 함께 포함하고 있어 변수선택이 쉽지 않다. 본 연구에서는 빠른 전진선택법인 LARS 를 이용한 변수선택법을 제시한다. 제안된 방법은 LARS에 의하여 선별된 변수들에 대하여 t-검정, 가능한 모든 회귀모형 비교 또는 단계별 선택법을 적용한다. 제안된 방법들의 효율성을 비교하기 위하여 실제데이터에 적용한 예제와 모의실험 결과가 제시된다.

COMPARISON OF VARIABLE SELECTION AND STRUCTURAL SPECIFICATION BETWEEN REGRESSION AND NEURAL NETWORK MODELS FOR HOUSEHOLD VEHICULAR TRIP FORECASTING

  • Yi, Jun-Sub
    • Journal of applied mathematics & informatics
    • /
    • 제6권2호
    • /
    • pp.599-609
    • /
    • 1999
  • Neural networks are explored as an alternative to a regres-sion model for prediction of the number of daily household vehicular trips. This study focuses on contrasting a neural network model with a regression model in term of variable selection as well as the appli-cation of these models for prediction of extreme observations, The differences in the models regarding data transformation variable selec-tion and multicollinearity are considered. The results indicate that the neural network model is a viable alternative to the regression model for addressing both messy data problems and limitation in variable structure specification.

분위수 회귀나무를 이용한 변수선택 방법 연구 (Variable selection with quantile regression tree)

  • 장영재
    • 응용통계연구
    • /
    • 제29권6호
    • /
    • pp.1095-1106
    • /
    • 2016
  • Koenker 등 (1978)에 의해 제안 된 분위수 회귀분석법은 독립변수들이 주어졌을 때, 종속변수의 조건부 분위수에 초점을 맞추어 독립변수들과 종속변수의 해당 특정 분위수와의 관계를 분석하는 방법이다. 선형프로그래밍법 등을 이용한 분위수 회귀의 추정 과정을 생각해 볼 때, 고차원 대용량 자료의 경우에는 모형 적합에 어려움을 겪을 수 밖에 없다. 따라서 분위수 회귀의 문제에 있어서도 차원 축소의 문제, 조금 더 폭을 좁혀 생각해보면 변수선택의 문제를 통해 의사 결정에 영향을 미치는 주요 요인들을 파악하거나 적절한 규모의 모형을 적합하는 과정이 중요하다고 할 수 있다. 본 논문에서는 분위수 회귀의 변수선택의 문제를 보다 직관적이고 간단하게 해결하기 위한 방법으로서 회귀나무 모형을 응용하여 한국야구위원회에 등록된 선수들의 연봉과 기록 데이터를 분석해 보았다. 분석 결과, 각 분위수 별로 소수의 주요 변수가 선택되어 차원축소의 효과를 얻을 수 있었다. 또한 해당 분위수별로 선택된 변수도 해석상 의미 있는 것으로 평가할 수 있었다.

정규분포기반 두각 혼합모형의 순환적 적합을 이용한 군집분석에서의 변수선택 (Variable Selection in Clustering by Recursive Fit of Normal Distribution-based Salient Mixture Model)

  • 김승구
    • 응용통계연구
    • /
    • 제26권5호
    • /
    • pp.821-834
    • /
    • 2013
  • Law 등 (2004)은 군집분석에서 변수선택을 위해 정규분포기반 "두각 혼합모형(salient mixture model)"의 사용을 제안하였다. 본 논문에서는 이 모형의 적합 상의 문제점과 변수선택의 결함을 지적하고 그 대안을 제시한다. 모의자료와 실자료를 바탕으로 제안된 방법이 기존의 방법보다 유용함을 보였다.

Variable selection in L1 penalized censored regression

  • Hwang, Chang-Ha;Kim, Mal-Suk;Shi, Joo-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권5호
    • /
    • pp.951-959
    • /
    • 2011
  • The proposed method is based on a penalized censored regression model with L1-penalty. We use the iteratively reweighted least squares procedure to solve L1 penalized log likelihood function of censored regression model. It provide the efficient computation of regression parameters including variable selection and leads to the generalized cross validation function for the model selection. Numerical results are then presented to indicate the performance of the proposed method.

Two-Stage Penalized Composite Quantile Regression with Grouped Variables

  • Bang, Sungwan;Jhun, Myoungshic
    • Communications for Statistical Applications and Methods
    • /
    • 제20권4호
    • /
    • pp.259-270
    • /
    • 2013
  • This paper considers a penalized composite quantile regression (CQR) that performs a variable selection in the linear model with grouped variables. An adaptive sup-norm penalized CQR (ASCQR) is proposed to select variables in a grouped manner; in addition, the consistency and oracle property of the resulting estimator are also derived under some regularity conditions. To improve the efficiency of estimation and variable selection, this paper suggests the two-stage penalized CQR (TSCQR), which uses the ASCQR to select relevant groups in the first stage and the adaptive lasso penalized CQR to select important variables in the second stage. Simulation studies are conducted to illustrate the finite sample performance of the proposed methods.

Penalized rank regression estimator with the smoothly clipped absolute deviation function

  • Park, Jong-Tae;Jung, Kang-Mo
    • Communications for Statistical Applications and Methods
    • /
    • 제24권6호
    • /
    • pp.673-683
    • /
    • 2017
  • The least absolute shrinkage and selection operator (LASSO) has been a popular regression estimator with simultaneous variable selection. However, LASSO does not have the oracle property and its robust version is needed in the case of heavy-tailed errors or serious outliers. We propose a robust penalized regression estimator which provide a simultaneous variable selection and estimator. It is based on the rank regression and the non-convex penalty function, the smoothly clipped absolute deviation (SCAD) function which has the oracle property. The proposed method combines the robustness of the rank regression and the oracle property of the SCAD penalty. We develop an efficient algorithm to compute the proposed estimator that includes a SCAD estimate based on the local linear approximation and the tuning parameter of the penalty function. Our estimate can be obtained by the least absolute deviation method. We used an optimal tuning parameter based on the Bayesian information criterion and the cross validation method. Numerical simulation shows that the proposed estimator is robust and effective to analyze contaminated data.

Penalized variable selection for accelerated failure time models

  • Park, Eunyoung;Ha, Il Do
    • Communications for Statistical Applications and Methods
    • /
    • 제25권6호
    • /
    • pp.591-604
    • /
    • 2018
  • The accelerated failure time (AFT) model is a linear model under the log-transformation of survival time that has been introduced as a useful alternative to the proportional hazards (PH) model. In this paper we propose variable-selection procedures of fixed effects in a parametric AFT model using penalized likelihood approaches. We use three popular penalty functions, least absolute shrinkage and selection operator (LASSO), adaptive LASSO and smoothly clipped absolute deviation (SCAD). With these procedures we can select important variables and estimate the fixed effects at the same time. The performance of the proposed method is evaluated using simulation studies, including the investigation of impact of misspecifying the assumed distribution. The proposed method is illustrated with a primary biliary cirrhosis (PBC) data set.