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Abstract
This paper considers a penalized composite quantile regression (CQR) that performs a variable selection in

the linear model with grouped variables. An adaptive sup-norm penalized CQR (ASCQR) is proposed to select
variables in a grouped manner; in addition, the consistency and oracle property of the resulting estimator are also
derived under some regularity conditions. To improve the efficiency of estimation and variable selection, this
paper suggests the two-stage penalized CQR (TSCQR), which uses the ASCQR to select relevant groups in the
first stage and the adaptive lasso penalized CQR to select important variables in the second stage. Simulation
studies are conducted to illustrate the finite sample performance of the proposed methods.

Keywords: Composite quantile regression, factor selection, penalization, sup-norm, variable se-
lection.

1. Introduction

Consider the estimation of the unknown regression coefficient vector βββ∗ = (β∗1, . . . , β
∗
p)T in the linear

regression model

yi = xxxT
i βββ
∗ + εi, i = 1, . . . , n, (1.1)

where yi is the response of interest, xxxi = (xi1, . . . , xip)T is a set of predictor variables, and {εi} are unob-
servable, independent, and identically distributed random errors from a distribution F with mean zero.
Without a loss of generality, we center the response and each predictor variable. The least squares
regression (LSR) is a popular method to estimate βββ∗ with its mathematical beauty and its estimator
is of full efficiency when the error term follows a normal distribution. However, it is well known
that the traditional ordinary least squares may fail to produce a reliable estimator for data subject to
heavy-tailed errors or outliers. As an alternative to the LSR method, Koenker (1984) proposed the
composite quantile regression (CQR) to improve the efficiency of estimation. By using equal weights
for the K different quantiles, the CQR method estimates βββ∗ by

(
b̂τ1 , . . . , b̂τK , β̂ββ

CQR
)
= arg min

b1,...,bK , βββ

K∑
k=1

n∑
i=1

ρτk

(
yi − bk − xxxT

i βββ
)
, (1.2)
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where the loss function ρτk (·), called the check function (Koenker and Bassett, 1978), is defined by
ρτk (t) = t(τk− I(t < 0)) and {τk, k = 1, . . . ,K} is a given sequence of quantiles. Note that the regression
coefficients in the linear model (1.1) are identical for the K distinct quantile regressions. Therefore,
the CQR method has the capability to share the strength among multiple conditional quantiles.

In a regression problem, variable selection plays an important role in model building because the
irrelevant predictors selected in the final model make it difficult to interpret the resultant model and
may decrease its predictive ability. In the context of mean regression, several penalization methods
have been developed to automate variable selection that include the lasso (Tibshirani, 1996), the
SCAD (Fan and Li, 2001), and the adaptive lasso (Zou, 2006); under the proper regularity conditions,
both the SCAD and the adaptive lasso estimators possess the oracle property to work as well as if
the correct submodel were known. By adopting the idea of the adaptive lasso, Zou and Yuan (2008a)
suggested an adaptive lasso penalized CQR (ALCQR) method, and established the oracle property of
its estimator β̂ββ

ALCQR
obtained from the following model fitting:

(
b̂τ1 , . . . , b̂τK , β̂ββ

ALCQR
)
= arg min

b1,...,bK , βββ

K∑
k=1

n∑
i=1

ρτk

(
yi − bk − xxxT

i βββ
)
+ λ

p∑
j=1

1∣∣∣∣β̂CQR
j

∣∣∣∣γ |β j|, (1.3)

where β̂CQR
j ( j = 1, . . . , p) is the unpenalized CQR estimator and γ > 0 is some pre-specified positive

number. When K = 1, the ALCQR reduces to the adaptive lasso penalized quantile regression (Wu
and Liu, 2009).

As described in (1.3), the ALCQR method was invented to automate individual variable selection
during the CQR model fitting. In many regression problems, however, it is often more meaningful
to identify significant factors rather than individual predictors, where each factor is represented by a
group of predictor variables (Yuan and Lin, 2006). In practice, such a problem arises naturally when a
set of dummy variables are used to represent a categorical variable and/or when a set of basis functions
of a continuous variable is included in the predictor set. In these situations, it is desirable to select
predictor variables in a grouped manner. To satisfy this purpose to estimate the regression coefficients,
we first propose the adaptive sup-norm penalized CQR (ASCQR) method that penalizes the CQR loss
function by the sum of factor-wise adaptive sup-norm penalties. The proposed ASCQR method is a
generalized form of ALCQR and possesses the oracle property under some mild regularity conditions
as the ALCQR dose. To improve the efficiency of estimation and variable selection, furthermore, we
suggest a two-stage penalized CQR (TSCQR) method that uses the ASCQR method to select relevant
groups in the first stage and the ALCQR method to select important predictor variables in the second
stage.

The rest of this paper is organized as follows. Section 2 introduces the ASCQR method and
establishes the oracle property of its estimator. Section 3 focuses on an explanation of the TSCQR
method. Simulation results are reported in Section 4. Section 5 contains a few concluding remarks
and the technical proofs of theorems are presented in Section 6.

2. Adaptive Sup-Norm Penalized Composite Quantile Regression (ASCQR)

2.1. The ASCQR estimator

Suppose that in the regression model (1.1), the predictors xxxT
i = (xi1, . . . , xip) are grouped into G factors

as (xxxT
i,(1), . . . , xxx

T
i,(G)), where xxxT

i,( j) = (xi, j1, . . . , xi, jp j ) is a group of p j predictor variables for j = 1, . . . ,G
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and
∑G

j=1 p j = p. Then the regression model (1.1) can be represented by

yi =

G∑
j=1

xxxT
i,( j)βββ

∗
( j) + εi, i = 1, . . . , n, (2.1)

where βββ∗( j) = (β∗j1, . . . , β
∗
jp j

)T ∈ Rp j is the regression coefficient vector associated with the jth factor.
In this paper, we use the terms “factor” and “group” interchangeably to indicate the grouping of vari-
ables. For example, when we want to produce more flexible functions other than linear models and/or
include categorical variables, we add new variables generated from original ones using appropriate
transformation such as polynomials or dummy variables. In such a situation, it is more reasonable to
automatically and simultaneously select significant factors, rather than individual derived variables.

In the context of mean regression, several penalization methods have been developed for simulta-
neous estimation of regression coefficients and factor selection that include the group lasso (Yuan and
Lin, 2006), the adaptive group lasso (Wang and Leng, 2008), and the penalized LSR using composite
absolute penalties (CAP) (Zhao et al., 2009). However, these methods would be extremely sensi-
tive to outlying observations and inefficient for heavy tailed error distributions due to the property
of the quadratic loss function. To remedy such a limitation, we suggest using the CQR loss in (1.2)
as an alternative to the quadratic loss, and propose the following adaptive sup-norm penalized CQR
(ASCQR) model fitting:

(
b̂τ1 , . . . , b̂τK , β̂ββ

AS CQR
)
= arg min

b1,...,bK , βββ

K∑
k=1

n∑
i=1

ρτk

yi−bk−
G∑
j=1

xxxT
i,( j)βββ( j)

 + nλ
G∑
j=1

1∣∣∣∣∣∣∣∣β̂ββCQR
( j)

∣∣∣∣∣∣∣∣γ∞
∣∣∣∣∣∣βββ( j)

∣∣∣∣∣∣∞ , (2.2)

where the sup-norm penalty is defined by∣∣∣∣∣∣βββ( j)

∣∣∣∣∣∣∞ = max
{∣∣∣β j1

∣∣∣ , . . . , ∣∣∣β jp j

∣∣∣} , j = 1, . . . ,G, (2.3)

β̂ββ
CQR
( j) is the unpenalized CQR estimator associated with the jth factor, and γ > 0 is some pre-specified

number (γ = 1 was used for our simulation study). As suggested in Zou and Yuan (2008a), we also
use the equally spaced quantiles

τk =
k

K + 1
, k = 1, . . . ,K. (2.4)

When each individual predictor is considered as a factor, that is, p1 = · · · = pG = 1, the ASCQR
reduces to the ALCQR described in (1.3). Therefore, the ASCQR method is a generalization of the
ALCQR; the ASCQR method has the capability to automate factor selection in the model fitting,
whereas the ALCQR contain no information on the factors. Instead of the sup-norm, we can also
employ the L2-norm || · ||2 for the penalty term in (2.2). In this paper, we focus on the sup-norm
penalty because its use makes the computation efficient in the model fitting. With its computational
efficiency, the sup-norm penalty (2.3) has also been considered for the simultaneous factor selection
in the support vector machine (Zou and Yuan, 2008b) and in the quantile regression (Bang and Jhun,
2012).
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2.2. Theoretical properties

In this section, we establish the oracle property of the ASCQR estimator. Without loss of generality,
we assume that only the first g ≤ G factors are relevant and that

∑g
j=1 p j = p0. That is,

A =
{
j : βββ∗( j) , 000

}
= {1, 2, . . . , g} and Ac =

{
j : βββ∗( j) = 000

}
= {g + 1, . . . ,G}. (2.5)

It is further assumed that all predictor variables associated with each relevant factor have nonzero
coefficients, which implies

β jl , 0, for j = 1, . . . , g and l = 1, . . . , p j. (2.6)

For convenience, let βββ∗ = (βββ∗TA , βββ∗TAc )T , where βββ∗A = (βββ∗T(1), . . . , βββ
∗T
(g))

T and βββ∗Ac = (βββ∗T(g+1), . . . , βββ
∗T
(G))

T . For
our theoretical results, we assume the following regularity conditions:

Condition 1. {εi} are i.i.d. random errors with the τth
k quantile b∗τk

= F−1(τk) and a continuous, positive
density f (·) in a neighborhood of b∗τk

for k = 1, . . . ,K.

Condition 2. There exists a p × p positive definite matrix Σ such that limn→∞ n−1 ∑n
i=1 xxxixxxT

i = Σ.

Note that Condition 1 and Condition 2 are basically the same conditions for establishing the asymp-
totic normality of a single quantile regression estimator (Koenker, 2005). Under these regularity
conditions, we have the following two theorems.

Theorem 1. (Root-nnn consistency) Assume that the regularity Condition 1 and Condition 2 hold.
If
√

nλ = Op(1), then ||β̂ββAS CQR
( j) − βββ∗|| = Op(n−1/2).

Theorem 2. (Oracle property) Assume that the regularity Condition 1 and Condition 2 hold. If√
nλ→ 0 and n(γ+1)/2λ→ ∞, then the ASCQR estimator must satisfy:

(a) Sparsity: P
(
β̂ββ

AS CQR
Ac = 000

)
→ 1.

(b) Asymptotic normality:
√

n
(
β̂ββ

AS CQR
Ac − βββ∗A

)
→d N

(
000, σ2

CQRΣ
−1
AA

)
,

where ΣAA is the top-left p0 × p0 submatrix of Σ and σ2
CQR = (

∑K
k=1 f (b∗τk

))−2(
∑K

k, k′=1(τk ∧ τk′ −
τkτk′ )).

If a tuning parameter λ is appropriately chosen, then Theorem 2 implies that the ASCQR estimator is
as efficient as oracle. The proofs of Theorem 1 and Theorem 2 given in Section 6 are similar to the
findings of prior research (Koenker, 1984; Zou and Yuan, 2008a; Bang and Jhun, 2012).

2.3. Computing algorithm

The optimization problem of the ASCQR method can be formulated as a linear programming (LP)
problem. To derive the LP formulation, we introduce (2n)K slack variables {(uik, vik), i = 1, . . . , n, k =
1, . . . ,K} that satisfy the equality constraints yi − bk −

∑G
j=1 xxxT

i,( j)βββ( j) = uik − vik, where uik ≥ 0 and
vik ≥ 0 for i = 1, . . . , n and k = 1, . . . ,K. The slack variables uik and vik represent the positive and
negative parts of the residuals for the ith observation of the τth

k regression quantile, respectively. Let
the new variable M j = ||βββ( j)||∞ for j = 1, . . . ,G and write bk as b+k − b−k and βββ( j) as βββ+( j) − βββ−( j), where
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b+k ≥ 0, b−k ≥ 0, βββ+( j) = (β+j1, . . . , β
+
jp j

)T ≥ 000, and βββ−( j) = (β−j1, . . . , β
−
jp j

)T ≥ 000. Then the adaptive sup-
norm penalty term can be formulated linearly with some linear inequality constraints. By using these
variables and notations, the ASCQR estimator in (2.2) can be obtained by minimizing

K∑
k=1

n∑
i=1

(τkuik + (1 − τk)vik) + nλ
G∑
j=1

∣∣∣∣∣∣∣∣βββCQR
( j)

∣∣∣∣∣∣∣∣−γ∞ M j, (2.7)

subject to

b+k − b−k +
G∑
j=1

xxxT
i,( j)

(
βββ+( j) − βββ−( j)

)
+ uik − vik = yi,

M j ≥ β+jl + β−jl,
uik ≥ 0, vik ≥ 0, b+k ≥ 0, b−k ≥ 0, β+jl ≥ 0, β−jl ≥ 0, for all 1 ≤ i ≤ n, 1 ≤ j ≤ p, 1 ≤ k ≤ K, 1 ≤ l ≤ p j.

In this study, we used the lpSolve package provided in R to implement the above LP problem (R code
is available for interested readers upon request).

3. Two-Stage Penalized Composite Quantile Regression (TSCQR)

To make the oracle property of the ASCQR estimator hold, it must be satisfied that all the predictor
variables within each relevant group have nonzero coefficients as described in (2.6). However, it is
common in practice that not all the predictors are relevant to the response within one group. The
sup-norm penalty in (2.3) tends to select either all variables or no variable in one group. When
one predictor variable in a group is selected, all other variables in the same group are also selected.
Thus, the ASCQR method does not perform a variable selection within an identified group and there
is no guarantee that the ASCQR estimator is as efficient as the oracle estimator in such situations.
Nonetheless, the proposed ASCQR method can consistently identify irrelevant groups as described in
Theorem 2(a) even when the assumption (2.6) is violated. In these regards, we suggest a two-stage
penalized CQR (TSCQR) method that consists of a group selection stage and a variable selection
stage; irrelevant groups are excluded in the first stage by using the ASCQR, and then in the second
stage, the ALCQR is used to perform individual variable selection with retained variables.

Suppose that we first fit the ASCQR estimator by using all the groups of predictor variables. Let
Â and Âc be the estimated set of indices for the relevant groups and the irrelevant groups, respectively,
which implies

Â =
{

j : β̂ββ
AS CQR
( j) , 000

}
and Âc =

{
j : β̂ββ

AS CQR
( j) = 000

}
. (3.1)

We use βββ∗
Â

and βββ∗
Âc to denote true regression coefficient vectors corresponding to the set Â and Âc,

respectively, and write the TSCQR estimators of βββ∗
Â

and βββ∗
Âc as β̂ββ

TS CQR
Â and β̂ββ

TS CQR
Âc , respectively.

Based on the theoretical properties of the ASCQR estimator in Theorem 2(a), the estimated irrelevant
groups corresponding to the set Âc could be excluded in the first stage, that is, we estimate βββ∗

Âc by

β̂ββ
TS CQR
Âc = 000. Then in the second stage, we estimate the regression coefficients of retained variables βββ∗

Â
by(

b̂τ1 , . . . , b̂τK , β̂ββ
TS CQR
Â

)
= arg min

b1,...,bK , βββÂ

K∑
k=1

n∑
i=1

ρτk

yi−bk−
∑
j∈Â

xxxT
i,( j)βββ( j)

+nλ
∑
j∈Â

p j∑
l=1

1∣∣∣∣β̂AS CQR
jl

∣∣∣∣γ
∣∣∣β jl

∣∣∣ , (3.2)
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where βAS CQR
jl is the ASCQR estimator associated with the lth variable in the jth group.

4. Simulation Study

In this section, simulation studies were conducted to evaluate the finite sample performance of the
proposed ASCQR and TSCQR methods with the number of quantile K = 5. For comparison purpose,
we also included the ALCQR method in the simulation. The two simulated examples were considered
are similar to those in Yuan and Lin (2006) and Bang and Jhun (2012). For each of the simulated
examples, five different error distributions were considered ranging from symmetric to asymmetric
ones: normal N(0, 1), t distribution with degree of freedoms 3 T (3), a mixture of normals (MN)
0.1N(0, 25)+ 0.9N(0, 1), lognormal LN(0, 1), and exponential distribution EXP(1). To maintain a fair
comparison and to satisfy the assumption of mean zero error terms, we first standardized the error
distributions to have a mean zero and variance one. In our simulated examples, we generated n = 100
training observations, along with 1,000 independent validation observations. The models were fitted
on training data only and the validation set was used to select the tuning parameter λ. To evaluate the
prediction accuracy for each method, the model error is computed by

ME =
(
β̂ββ − βββ∗

)T
E

(
XXXT XXX

) (
β̂ββ − βββ∗

)
, (4.1)

where XXX is a design matrix. We used the model error of the LSR and CQR oracles as the bench-
mark. The model selection performance was measured by the number of correctly selected factors
and variables (NC), the number of incorrectly selected factors and variables (NIC), and the number
of times that the true model is correctly identified. To assess the sampling variability, this procedure
was repeated 100 times independently. In the tables, the model error, NC and NIC, were reported on
averages of over 100 runs. The numbers given in parentheses are the standard deviations of the model
errors.

4.1. Example 1

This example concerns an additive model with continuous factors. Ten random variables Z1, . . . , Z9
and W were independently generated from a standard normal distribution. Then we considered the
following model

Y = X1 + X2
1 + X3

1 +
2
3

X3 − X2
3 +

1
3

X3
3 + ε, (4.2)

where the factors are defined as X j = (Z j + W)/
√

2 for j = 1, . . . , 9. This model has 9 factors
(groups of variables), and each factor is represented by a third-order polynomial. Thus this model
has 27 predictor variables and 9 groups. The 2 factors associated with X1 and X3 have nonzero
coefficients. Table 1 summarizes the performance of each method for the above simulated model
(4.2) in terms of model error and model selection. As expected, the LSR oracle was the best when
the random error follows a normal distribution. However, for the non-normal distributions, the CQR
oracle outperformed the LSR oracle in terms of model error. These results are consistent with the
findings of Koenker (1984) and Zou and Yuan (2008a). The proposed ASCQR were superior to
the ALCQR for each error distribution in terms of model error and factor selection performance.
The ASCQR included a larger number of predictor variables than ALCQR due to its block-inclusion
nature; however, we can see that ASCQR identified the relevant groups efficiently by retaining all
important variables. The proposed TSCQR could produce more accurate and sparser model than the
others because of the characteristics of ASCQR.
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Table 1: Simulation results for Example 1

Error Dist. Method Mean absolute error No. of factors selected No. of variables selected No. of times
NC NIC NC NIC for true model

LSR-oracle 0.0920 (0.0624) 2 0 6 0 100
CQR-oracle 0.1109 (0.0836) 2 0 6 0 100

N(0, 1) ALCQR 0.1718 (0.1307) 2 2.15 5.89 2.33 18
ASCQR 0.1117 (0.0846) 2 1.84 6 5.52 23
TSCQR 0.1071 (0.0748) 2 0.44 6 0.47 65

LSR-oracle 0.0831 (0.0756) 2 0 6 0 100
CQR-oracle 0.0529 (0.0550) 2 0 6 0 100

MN ALCQR 0.0728 (0.0724) 2 1.76 6 1.99 18
ASCQR 0.0509 (0.0490) 2 1.46 6 4.38 27
TSCQR 0.0542 (0.0524) 2 0.25 6 0.27 78

LSR-oracle 0.0683 (0.0656) 2 0 6 0 100
CQR-oracle 0.0534 (0.0561) 2 0 6 0 100

T (3) ALCQR 0.0810 (0.1055) 2 1.70 5.90 1.85 12
ASCQR 0.0573 (0.0519) 2 1.66 6 4.98 15
TSCQR 0.0554 (0.0583) 2 0.31 6 0.34 77

LSR-oracle 0.0798 (0.0833) 2 0 6 0 100
CQR-oracle 0.0228 (0.0231) 2 0 6 0 100

LN(0, 1) ALCQR 0.0314 (0.0285) 2 1.20 6 1.31 40
ASCQR 0.0236 (0.0243) 2 1.24 6 3.72 46
TSCQR 0.0239 (0.0229) 2 0.11 6 0.12 91

LSR-oracle 0.0879 (0.0776) 2 0 6 0 100
CQR-oracle 0.0544 (0.0561) 2 0 6 0 100

EXP(1) ALCQR 0.0878 (0.0775) 2 1.89 5.95 2.12 13
ASCQR 0.0688 (0.0588) 2 1.51 6 4.53 26
TSCQR 0.0578 (0.0479) 2 0.29 6 0.32 75

The numbers in parentheses are standard deviations.

4.2. Example 2

In this example, 10 factors (X1, . . . , X10)T were generated from a multivariate normal distribution
N(000,Σ), whose covariance matrix Σi j = 0.5|i− j| for 0 ≤ i, j ≤ 10. Then the last 5 factors (X6, . . . , X10)T

were trichotomized as 0, 1, or 2 if it was smaller than Φ−1(1/3), larger than Φ−1(2/3), or somewhere
in between. The true regression model is given by

Y = X1 + X2
1 +

2
3

X3 +
1
3

X3
3 + 2I(X6 = 0) + I(X6 = 1) + ε. (4.3)

This model is an additive model involving 5 continuous factors and 5 categorical factors, where each
continuous factor is represented by a third-order polynomial and each categorical factor with 3 levels
is represented by 2 dummy variables; subsequently, this model has 25 predictor variables and 10
groups. The two groups associated with continuous factors X1 and X3 are related to the response,
but not all the predictor variables within those groups are important, such as the coefficients of the
predictor variables X3

1 and X2
3 are zero. Table 2 reports the performance of each method in terms

of model error and model selection; in addition, the conclusions are similar to those of Example 1.
ASCQR did not perform as well as the oracle since the simulated model (4.3) violated the assumption
(2.6). However, we can see that by using ASCQR for the group selection in the first stage, TSCQR
provided the efficient performance in terms of the model error as well as model selection.

5. Concluding Remarks

In this paper, we have developed the adaptive sup-norm penalized CQR (ASCQR) method, which
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Table 2: Simulation results for Example 2

Error Dist. Method Mean absolute error No. of factors selected No. of variables selected No. of times
NC NIC NC NIC for true model

LSR-oracle 0.0708 (0.0486) 3 0 6 0 100
CQR-oracle 0.0968 (0.0774) 3 0 6 0 100

N(0, 1) ALCQR 0.2094 (0.1681) 3 2.07 5.94 2.54 3
ASCQR 0.1980 (0.1353) 3 2.09 6 7.69 0
TSCQR 0.1184 (0.0881) 3 0.59 6 1.14 24

LSR-oracle 0.0791 (0.0672) 3 0 6 0 100
CQR-oracle 0.0547 (0.0506) 3 0 6 0 100

MN ALCQR 0.0779 (0.0743) 3 1.59 6 1.92 14
ASCQR 0.0828 (0.0609) 3 2.04 6 7.62 0
TSCQR 0.0552 (0.0525) 3 0.45 6 1.06 40

LSR-oracle 0.0616 (0.0462) 3 0 6 0 100
CQR-oracle 0.0528 (0.0391) 3 0 6 0 100

T (3) ALCQR 0.0849 (0.0593) 3 1.74 5.89 2.15 15
ASCQR 0.1030 (0.0797) 3 1.69 6 6.74 0
TSCQR 0.0588 (0.0453) 3 0.45 6 0.98 34

LSR-oracle 0.0693 (0.0720) 3 0 6 0 100
CQR-oracle 0.0186 (0.0138) 3 0 6 0 100

LN(0, 1) ALCQR 0.0276 (0.0273) 3 1.11 5.92 1.30 29
ASCQR 0.0401 (0.0350) 3 1.69 6 6.64 0
TSCQR 0.0200 (0.0185) 3 0.22 6 0.52 63

LSR-oracle 0.0685 (0.0591) 3 0 6 0 100
CQR-oracle 0.0524 (0.0603) 3 0 6 0 100

EXP(1) ALCQR 0.0916 (0.1052) 3 1.68 6 2.08 16
ASCQR 0.0995 (0.0636) 3 1.74 6 6.75 0
TSCQR 0.0563 (0.0627) 3 0.32 6 0.72 46

The numbers in parentheses are standard deviations.

performs variable selection in a grouped manner. We established the consistency and oracle prop-
erty of the proposed ASCQR estimator. Furthermore, we have proposed a two-stage penalized CQR
(TSCQR) method to improve the efficiency of estimation and variable selection. The simulation re-
sults showed that the proposed methods result in a higher efficiency than the ALCQR does, especially
when the assumption (2.6) is satisfied. In this paper, we used the equal weights w1 = · · · = wK = 1 in
the following CQR loss function:

K∑
k=1

wk

n∑
i=1

ρτk

yi − bk −
G∑
j=1

xxxT
i,( j)βββ( j)

 . (5.1)

Koenker (1984) discussed the optimal values of weights wk (k = 1, . . . ,K) theoretically. Bradic et
al. (2011) suggested a data-driven method for estimating the optimal weights and showed that the
efficiency of the CQR using the equal weights can be significantly improved by employing proper
weights. In this regard, we expect that the proposed methods can provide a more efficient estimator if
a reliable estimation method of the optimal weights is developed in future research.

6. Proofs of the Theorems

We now provide the proofs of Theorem 1 and Theorem 2.

Proof of Theorem 1:
Let Q(bbbτ, βββ) =

∑K
k=1

∑n
i=1 ρτk (yi − bτk − xxx′iβββ) + nλ

∑G
j=1 ||β̂ββ

CQR
( j) ||

−γ
∞ ||βββ( j)||∞ and Ln(vvv,uuu) = Q(bbb∗τ +

n−1/2vvv, βββ∗ + n−1/2uuu) − Q(bbb∗τ, βββ
∗), where bbbτ = (bτ1 , . . . , bτK )′ ∈ RK , vvv = (v1, . . . , vK)′ ∈ RK , and uuu =
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(uuu′(1), . . . ,uuu
′
(G))
′ ∈ Rp with uuu( j) = (u j1, . . . , u jp j )

′ ∈ Rp j for j = 1, . . . ,G. Following a similar strategy as
in Fan and Li (2001), then it is enough to show that for any given ε > 0, there exists a large constant
C such that

P
{

inf
||zzz||=C

Q
(
bbb∗τ + n−

1
2 vvv, βββ∗ + n−

1
2 uuu

)
> Q

(
bbb∗τ, βββ

∗)} ≥ 1 − ε, (6.1)

where zzz = (vvv′,uuu′)′ ∈ RK+p satisfying ||zzz|| = C.
Let Zn(vvv,uuu) =

∑K
k=1

∑n
i=1{ρτk (εi − b∗τk

− n−1/2(vk + xxx′iuuu)) − ρτk (εi − b∗τk
)}. Then it follows that

Ln(vvv,uuu) = Q
(
bbb∗τ + n−

1
2 vvv, βββ∗ + n−

1
2 uuu

)
− Q

(
bbb∗τ, βββ

∗)
= Zn(vvv,uuu) + nλ

G∑
j=1

∣∣∣∣∣∣∣∣β̂ββCQR
( j)

∣∣∣∣∣∣∣∣−γ∞
{∣∣∣∣∣∣

∣∣∣∣∣∣βββ∗( j) +
uuu( j)√

n

∣∣∣∣∣∣
∣∣∣∣∣∣∞ −

∣∣∣∣∣∣βββ∗( j)

∣∣∣∣∣∣
∞

}
(6.2)

≥ Zn(vvv,uuu) −
√

nλ
g∑

j=1

∣∣∣∣∣∣∣∣β̂ββCQR
( j)

∣∣∣∣∣∣∣∣−γ∞ ∣∣∣∣∣∣uuu( j)
∣∣∣∣∣∣∞ . (6.3)

Using Knight (1998)’s identity,

ρτ(u − v) − ρτ(u) = −vψτ(u) +
∫ v

0
{I(u ≤ s) − I(u ≤ 0)} ds with ψτ(u) = τ − I(u ≤ 0),

we can write

Zn(vvv,uuu) = Z(1)
n (vvv,uuu) + Z(2)

n (vvv,uuu),

where

Z(1)
n (vvv,uuu) = −

K∑
k=1

vk

n∑
i=1

1
√

n

(
τk − I

(
εi ≤ b∗τk

))
− uuu′

n∑
i=1

1
√

n
xxxi

K∑
k=1

(
τk − I

(
εi ≤ b∗τk

))
,

Z(2)
n (vvv,uuu) = −

K∑
k=1

n∑
i=1

∫ vk+xxx′i uuu
√

n

0

{
I
(
εi ≤ b∗τk

+ s
)
− I

(
εi ≤ b∗τk

)}
ds.

It follows from the Lindeberg-Feller CLT and Cramer-Wald device that

Z(1)
n (vvv,uuu)→d −

K∑
k=1

vkwk − uuu′W, (6.4)

where wk ∼ N(0, τk(1 − τk)) and W ∼ Np(000, (
∑K

k,k′=1(τk ∧ τk′ − τkτk′))Σ).

Letting Z(2)
n,k(vk,uuu) =

∑n
i=1

∫ (vk+xxx′iuuu)/
√

n
0 {I(εi ≤ b∗τk

+ s) − I(εi ≤ b∗τk
)}ds, we can write

Z(2)
n,k(vk,uuu) =

n∑
i=1

EZ(2)
n,k,i(vk,uuu) +

n∑
i=1

{
Z(2)

n,k,i(vk,uuu) − EZ(2)
n,k,i(vk,uuu)

}
.
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Without loss of generality, we assume that the predictors are centered to have mean zero, i.e., limn→∞ n−1∑n
i=1 xxxi = 000. Then we have

E
(
Z(2)

n,k(vk,uuu)
)
=

n∑
i=1

EZ(2)
n,k,i(vk,uuu) =

n∑
i=1

E


∫ vk+xxx′i uuu

√
n

0

{
I
(
εi ≤ b∗τk

+ s
)
− I

(
εi ≤ b∗τk

)}
ds


=

1
n

n∑
i=1

∫ vk+xxx′iuuu

0

√
n
{

F
(
b∗τk
+

s
√

n

)
− F

(
b∗τk

)}
ds→ 1

2
f
(
b∗τk

) [
vk uuu′

] [ 1 000′

000′ Σ

] [
vk

uuu

]
.

Moreover, we have

Var
(
Z(2)

n,k(vk,uuu)
)
=

n∑
i=1

E
{(

Z(2)
n,k,i(vk,uuu) − EZ(2)

n,k,i(vk,uuu)
)2
}
≤

n∑
i=1

1
√

n

∣∣∣vk + xxx′iuuu
∣∣∣ E

(
Z(2)

n,k,i(vk,uuu)
)

≤ max
1≤i≤n

1
√

n

∣∣∣vk + xxx′iuuu
∣∣∣ E

(
Z(2)

n,k(vk,uuu)
)
→ 0.

Thus, it follows that

Z(2)
n (vvv,uuu) =

K∑
k=1

Z(2)
n,k(vk,uuu)→p

K∑
k=1

1
2

f
(
b∗τk

) [
vk uuu′

] [ 1 000′

000′ Σ

] [
vk

uuu

]
. (6.5)

Following the results of (6.4) and (6.5), we can show that Z(2)
n (vvv,uuu) dominates Z(1)

n (vvv,uuu) uniformly in
||zzz|| = C when a sufficiently large C is chosen. From the assumption

√
nλ = Op(1) and ||β̂ββCQR

( j) ||
−γ
∞ →p

||βββ∗( j)||
−γ
∞ ( j = 1, . . . , g), furthermore, the second term in (5.4) is also dominated by Z(2)

n (vvv,uuu). Hence,
by choosing a sufficiently large C, (6.1) holds. �
Proof of Theorem 2:

We first prove the asymptotic normality part. For the second term in the right hand side of (6.2),
we have ||β̂ββCQR

( j) ||
−γ
∞ →p ||βββ∗( j)||

−γ
∞ and |

√
n{||βββ∗( j)+uuu( j)/

√
n||∞−||βββ∗( j)||∞}| ≤ ||uuu( j)||∞ for j = 1, . . . , g. Hence,

from the assumption
√

nλ → 0, we have nλ||β̂ββCQR
( j) ||

−γ
∞ {||βββ∗( j) + uuu( j)/

√
n||∞ − ||βββ∗( j)||∞} →p 0 for j =

1, . . . , g. However, for j = g + 1, . . . ,G, we have
√

nλ||β̂ββCQR
( j) ||

−γ
∞ = n(1+γ)/2λ||

√
nβ̂ββ

CQR
( j) ||

−γ
∞ →p ∞ with

√
nβ̂ββ

CQR
( j) = Op(1) and the assumption n(1+γ)/2λ→ ∞. Since

√
n{||βββ∗( j) + uuu( j)/

√
n||∞ − ||βββ∗( j)||∞} = ||uuu( j)||∞

for j = g+ 1, . . . ,G, it follows that nλ||β̂ββCQR
( j) ||

−γ
∞ {||βββ∗( j) +uuu( j)/

√
n||∞ − ||βββ∗( j)||∞} →p ∞ if uuu( j) , 000 and = 000

otherwise. These facts and the results of (6.4) and (6.5) in the proof of Theorem 1 imply that

Ln(vvv,uuu)→d L0(vvv,uuu)

=

−
K∑

k=1

vkwk − uuu′AWA +

K∑
k=1

1
2

f
(
b∗τk

)
v2

k +
1
2

 K∑
k=1

f
(
b∗τk

)uuu′AΣAAuuuA, if uuu( j) = 000, for j ≥ g+1,

∞, otherwise,

where uuuA = (uuu′(1), . . . ,uuu
′
(g))
′ ∈ Rp0 and WA ∼ Np(000, (

∑K
k,k′=1(τk ∧ τk′ − τkτk′))ΣAA). The function Ln(vvv,uuu)

is convex and L0(vvv,uuu) has a unique minimizer. Thus, following the same arguments in Knight (1998)
and Koenker (2005), we have

√
n
(
β̂ββ

AS CQR
A − βββ∗A

)
→d

 K∑
k=1

f
(
b∗τk

)−1

Σ−1
AAWA ∼ N

(
000, σ2

CQRΣ
−1
AA

)
,
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where σ2
CQR = (

∑K
k=1 f (b∗τk

))−2(
∑K

k,k′=1(τk ∧ τk′ − τkτk′)). Therefore, the asymptotic normality part is
proven.

Now, we show the consistency property of model selection. For any given bbbτ and βββ = (βββT
A , βββ

T
Ac )T

satisfying that ||bbbτ − bbb∗τ|| = Op(n−1/2), ||βββA − βββ∗A|| = Op(n−1/2), and 0 < ||βββAc || ≤ Cn−1/2, we have

Q
(
bbbτ,

(
βββT

A ,000
T
)T

)
− Q

(
bbbτ,

(
βββT

A , βββ
T
Ac

)T
)

=

{
Q

(
bbbτ,

(
βββT

A ,000
T
)T

)
− Q

(
bbb∗τ,

(
βββ∗TA ,000T

)T
)}
−

{
Q

(
bbbτ,

(
βββT

A , βββ
T
Ac

)T
)
− Q

(
bbb∗τ,

(
βββ∗TA ,000T

)T
)}

= Zn

(√
n
(
bbbτ − bbb∗τ

)
,
√

n
((
βββA − βββ∗A

)T ,000T
)T

)
− Zn

(√
n
(
bbbτ − bbb∗τ

)
,
√

n
((
βββA − βββ∗A

)T , βββT
Ac

)T
)

− nλ
G∑

j=g+1

∣∣∣∣∣∣∣∣β̂ββCQR
( j)

∣∣∣∣∣∣∣∣−γ∞ ∣∣∣∣∣∣βββ( j)

∣∣∣∣∣∣∞ (6.6)

and the last term in (6.6) follows that

nλ
G∑

j=g+1

∣∣∣∣∣∣∣∣β̂ββCQR
( j)

∣∣∣∣∣∣∣∣−γ∞ ∣∣∣∣∣∣βββ( j)

∣∣∣∣∣∣∞ = (
n

1+γ
2 λ

) √
n

G∑
j=g+1

∣∣∣∣∣∣∣∣√nβ̂ββ
CQR
( j)

∣∣∣∣∣∣∣∣−γ∞ ∣∣∣∣∣∣βββ( j)

∣∣∣∣∣∣∞ → ∞
Hence, the assumption n(1+γ)/2λ → ∞ implies that nλ

∑G
j=g+1 ||β̂ββ

CQR
( j) ||

−γ
∞ ||βββ( j)||∞ is of higher order than

any other terms in (6.6) and dominates as a result. This in turn implies that Q(bbbτ, (βββT
A ,000

T )T ) −
Q(bbbτ, (βββT

A , βββ
T
Ac )T ) < 0 for large n. This proves the consistency of the model selection. �
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