An Algorithm based on direct implementation of variable structure systems theory approach is proposed for on-line training of multilayer perceptrons. Network structures which have multiple inputs, single output and one hidden layer are considered and the weights are assumed to have capabilities for continuous time adaptation. The zero level set of the network learning error is regarded as a sliding surface in the learning parameters space. A sliding mode trajectory can be brought on and reached in finite time on such a sliding manifold. Results from simulated on-line identification task for a two-link planar manipulator dynamics are also presented.
In this paper, we propose a practical cut generation method based on the Chvatal-Gomory procedure for the (0, 1)-Knapsack problem with a variable capacity. For a given set N of n items each of which has a positive integral weight and a facility of positive integral capacity, a feasible solution of the problem is defined as a subset S of N along with the number of facilities that can satisfy the sum of weights of all the items in S. We first derive a class of valid inequalities for the problem using Chvatal-Gomory procedure, then analyze the associated separation problem. Based on the results, we develop an affective cut generation method. We then analyze the theoretical strength of the inequalities which can be generated by the proposed cut generation method. Preliminary computational results are also presented which show the effectiveness of the proposed cut generation method.
The structure of a variable liquid column oscillator(a VLCO) is analogous to that of the tuned liquid column damper used to suppress oscillatory motion in large structures like tall buildings and cargo ships. The VLCO is a system absorbing high kinetic energy of accelerated motions of the multiple floating bodies in the effect of air springs occurred by installation of inner air chambers. Thus, VLCO can improve the efficiency of energy than wave energy converters of the activating object type made in Pelamis Company. In this research, the experiment was performed in two models of same draft. The one is that weights were filled, and the other is that water was filled. The numerical results were estimated by assuming that do not exist internal flow, and the results were compared with the results of experiments.
초고속 전동기 구동 시스템을 위하여 간접 신경회로망 제어기를 제안하였다. 고속의 가변 전동기구동에서의 속도응답은 긴 정착시간과 높은 오버슈트의 영향에 있게 되므로 고성능을 위하여 신경회로망 제어기와 신경회로망 에뮬레이터로 구성된 제어기를 사용하였으며, 신경회로망 에뮬레이터는 고속 전동기의 정수와 특성을 동정하는데 사용하였고, 제어기의 학습은 접속강도가 백프로퍼게이션에 의해 조절되도록 하였다. 그리고 시뮬레이션과 실험을 통하여 제안된 시스템의 특성과 장점을 확인하였다.
With the recent emergence of collaborative robots, demand for grippers to be used in service sites is increasing. Soft grippers have advantages in terms of compliance, cost, weight, and stability, but it is difficult to handle objects of various shapes, sizes, and weights with a single gripper. In this study, based on a fluidic elastomer actuator (FEA), we propose a pneumatic soft gripper that can grip a variety of objects, consisting of fingers capable of both grasping and vacuum suction and a base with variable stroke between the fingers using a pneumatic cylinder. A check valve is installed inside the finger, so that when positive pressure is supplied, the finger expands to perform adaptive grasping, and when negative pressure is supplied, vacuum suction can be performed. Grasping experiments were conducted on various objects to evaluate the performance of the proposed gripper, and 94% of 54 gripping objects were successfully grasped.
표본조사에서는 추정의 정확성 및 정밀성 향상을 위해 흔히 층화추출법을 사용하며 층 내에서는 동일한 표본 가중치를 이용하여 표본을 추출한다. 그러나 실제 응답률은 관심변수 값에 영향을 받을 수 있기 때문에 주어진 동일한 가중치는 응답률을 반영하여 보정되어야 한다. 또한 관심변수가 연속형 보조변수와 선형 관계가 있고 보조변수를 기준으로 층이 나누어진 경우에는 층 내에서 동일한 가중치를 사용하는 것 보다 층을 세분화한 후 얻어진 가중치를 사용하는 것이 효과적일 수 있다. 본 연구에서는 응답률이 관심변수 자료 값의 지수함수이고, 관심변수가 보조변수와 선형 관계가 있을 때 정보적 표본설계 기법을 이용하여 추정의 정확성과 정밀성을 높이는 방법을 제안하였다. 또한 모의실험을 통하여 제안된 방법의 우수성을 확인하였다.
신용평점표(credit scorecard) 작성시 각 특성변수(characteristic variable)들을 몇 개의 속성(attribute)들로 나누고 각 속성에 적절한 가중치를 부여하게 된다. 이 과정을 성김화(coarse classi cation)라 한다. 특성변수들을 속성들로 나눌 때 그 기준이 되는 절단값(cutpoint)을 선택해야 한다. 본 논문에서는 벌점화(penalization) 기반의 절단값 선택법을 제안한다. 또한 여러가지 모의실험과 실제 신용자료의 분석을 통하여 제안된 방법과 기존의 절단값 선택법인 스플라인 분류 기계 (Koo 등, 2009)의 성능을 비교한다.
지금까지 컨텍스트 예측 방법들은 이산 속성 컨텍스트를 대상으로 예측을 수행한 경우와 연속 속성 컨텍스트를 대상으로 예측을 수행한 경우로 나뉘어서 발전되어 왔다. 대부분의 예측 방법들은 컨텍스트의 획득 환경이나 특성에 맞게 특정 도메인에서 각각 예측 알고리즘을 작성하여 사용하여 왔기 때문에, 다양한 환경과 특성을 갖는 사용자의 컨텍스트를 대상으로 예측을 수행하기가 어렵다. 본 논문에서는 특정 도메인이나 컨텍스트의 특성에 국한되지 않고 이산 속성이나 연속 속성 컨텍스트들에 모두 적용 가능한 컨텍스트 예측 방법을 제안한다. 이를 위해 컨텍스트 속성간의 연관규칙을 고려하여 컨텍스트를 시퀀스로 생성하고, 컨텍스트 속성별 가변 가중치를 적용시켜 시퀀스 매칭 기반의 컨텍스트 예측을 수행한다. 제안한 방법을 평가하기 위해 이산 속성 컨텍스트와 연속 속성 컨텍스트에 각각 시뮬레이션한 결과 이산 속성 컨텍스트에서 80.12%, 연속 속성 컨텍스트에서 81.43%의 예측 정확도로 기존 예측방법들과 비슷한 성능을 보였다.
본 연구는 중부지역 일본잎갈나무의 수간중량 추정식을 개발하기 위하여 지역별 개체목의 지위와 직경을 고려하여 표준지를 선정한 뒤, 총 55본의 표본목을 선정하였다. 표본목의 실측자료를 이용하여 수피외생중량, 수피외건중량, 수피내 건중량 및 이용중량 등 네종류의 중량을 추정하기 위해 11개의 모형을 비교 분석하였다. 중량을 추정하기 위해 흉고직경을 변수로 이용하는 경우, 흉고직경과 수고를 이용하는 경우, 재적을 이용하는 경우의 3개 변수에 따라 모형을 구분하였다. 최적의 모형은 적합지수와 추정의 표준오차 및 잔차의 분포를 이용하여 모형의 이행능력을 비교하여 선정하였다. 그 결과, 1변수인 흉고직경을 이용하는 식은 $W=a+bD+c^D^2$이며 설명력은 90~92%를 나타냈고, 흉고직경과 수고를 이용한 2변수식은 $W=aD^bH^C$으로 97~98%의 설명력으로 2변수 모형이 1변수 모형 보다 높은 적합도를 보였다. 또한 전체수간에 대한 재적과 이용재적에 대한 식인 W = aV로 중량추정설명력이 98~99%으로 높게 나타났고 SEE도 7.7~17.5, CV(%)도 8.0~10.0으로 우세한 적합도를 보였다. 본 연구는 개체목의 중량정보 제공 및 임분단위의 중량 바이오매스추정식의 기초연구로 활용될 것으로 판단된다.
The reliability analysis for nonnormal distributions using the three level DOE(design of experiments) method was developed by Seo and Kwak in 2002. Although this method estimates only up to the first four moments(mean, standard deviation, skewness, and kurtosis) of the system response function, the result and the type of probability distribution determined by using the Pearson system are shown very good. However the accuracy is low in case of nonlinear performance function and sometimes, the level calculated is outside of the region in which the random variable is defined. In this article we suggest a modified three level DOE method to overcome these weaknesses and to obtain optimum choice for 3 levels and weights to handle nonnormal distributions. Furthermore we extend it to finding the optimum choice for 5 levels and weights to increase the accuracy in case of nonlinear performance function. A systematic procedure for reliability analysis is then proposed by using the Pearson system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.