• Title/Summary/Keyword: Variable Step

Search Result 803, Processing Time 0.062 seconds

Alternate Adaptation Algorithm for Blind Channel Equalization (블라인드 채널 등화를 위한 교번 적응 알고리즘)

  • Oh, Kil-Nam
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.129-135
    • /
    • 2011
  • The alternate adaptation algorithm (AAA) is proposed to improve the convergence characteristics and steady-state performance of the constant modulus algorithm (CMA). The alternate adaptation algorithm is a new equalization method which adapts an equalizer alternately by the algorithm with excellent blind convergence characteristics or the algorithm with better steady-state error performance. In this paper, it is introduced that the alternate adaptation equalization of the vsCMA (variable step-size CMA) and the decision-directed (DD) algorithm. We, first, designed the vsCMA with variable step-size to improve the steady-state error performance of the CMA, and combined it with the DD by alternate adaptation. As a result, it was mitigated that the sensitivity of performance fluctuation due to switching timing in CMA-DD switching method, and it was improved that the convergence speed and steady-state error performance of the CMA. Through computer simulations, under multipath channel condition, the usefulness of the proposed method was confirmed for 16-QAM.

Study on the 3D Assembly Inspection of Two-Step Variable Valve Lift Modules Using Laser-Vision Technology (레이저 비전을 이용한 2단 가변밸브 리프트 모듈의 3D 조립검사에 대한 연구)

  • Nguyen, Huu-Cuong;Kim, Do-Joong;Lee, Byung-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.10
    • /
    • pp.949-957
    • /
    • 2017
  • A laser-vision-based height measurement system is developed and implemented for the inspection of two-step variable valve lift module assemblies. The proposed laser-vision sensor module is designed based on the principle of laser triangulation. This paper summarizes the work on 3D point cloud data collection and height difference measurements. The configuration of the measurement system and the proposed height measurement algorithm are described and analyzed in detail. Additional measurement experiments on the height differences of valves and lash adjusters of a two-step variable valve lift module were implemented repeatedly to evaluate the accuracy and repeatability of the proposed measurement system. Experimental results show that the proposed laser-vision-based height measurement system achieves high accuracy, repeatability, and stabilization for the inspection of two-step variable valve lift module assemblies.

CNC Tool Path Planning for Free-Form Sculptured Surface with a New Tool Path Interval Algorithm (새로운 공구경로간격 알고리듬을 이용한 자유곡면에서의 CNC 공구경로 계획)

  • Lee, Sung-Gun;Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.6
    • /
    • pp.43-49
    • /
    • 2001
  • A reduced machining time and increased accuracy for the sculptured surface are very important when producing complicated parts. The step-size and tool-path interval are essential components in high speed and high resolution machining. If they are small, the machining time will increase, whereas if they are large, rough surfaces will be caused. In particular, the machining time, which is key in high speed machining, is affected by the tool-path interval more than the step-size. The conventional method for calculating the tool=path interval is to select a small parametric increment of a small increment based on the curvature of the surface. However, this approach also has limitations. The first is that the tool-path interval can not be calculated precisely. The second is that a separate tool-path interval needs to be calculated in each of the three cases. The third is that the conversion from Cartesian domain to parametric domain or vice versa must be necessary. Accordingly, the current study proposes a new tool-path interval algorithm that do not involve a curvature and that is not necessary for any conversion and a variable step-size algorithm for NURBS.

  • PDF

Design Optimization of a Rapid Moving Body Structure for a Machining Center Using G.A. with Variable Penalty Function (가변 벌점함수 유전알고리즘을 이용한 금형가공센터 고속이송체 구조물의 최적설계)

  • 최영휴;차상민;김태형;박보선;최원선
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.504-509
    • /
    • 2003
  • In this paper, a multi-step optimization using a G.A.(Genetic Algorithm) with variable penalty function is introduced to the structural design optimization of a high speed machining center. The design problem, in this case, is to find out the best cross-section shapes and dimensions of structural members which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously. The first step is the cross-section shape optimization, in which only the section members are selected to survive whose cross-section area have above a critical value. The second step is a static design optimization, in which the static compliance and the weight of the machine structure are minimized under some dimensional constraints and deflection limits. The third step is a dynamic design optimization, where the dynamic compliance and the structure weight are minimized under the same constraints as those of the second step. The proposed design optimization method was successful applied to the machining center structural design optimization. As a result, static and dynamic compliances were reduced to 16% and 53% respectively from the initial design, while the weight of the structure are also reduced slightly.

  • PDF

Discontinuous Grids and Time-Step Finite-Difference Method for Simulation of Seismic Wave Propagation (지진파 전파 모의를 위한 불균등 격자 및 시간간격 유한차분법)

  • 강태섭;박창업
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.50-58
    • /
    • 2003
  • We have developed a locally variable time-step scheme matching with discontinuous grids in the flute-difference method for the efficient simulation of seismic wave propagation. The first-order velocity-stress formulations are used to obtain the spatial derivatives using finite-difference operators on a staggered grid. A three-times coarser grid in the high-velocity region compared with the grid in the low-velocity region is used to avoid spatial oversampling. Temporal steps corresponding to the spatial sampling ratio between both regions are determined based on proper stability criteria. The wavefield in the margin of the region with smaller time-step are linearly interpolated in time using the values calculated in the region with larger one. The accuracy of the proposed scheme is tested through comparisons with analytic solutions and conventional finite-difference scheme with constant grid spacing and time step. The use of the locally variable time-step scheme with discontinuous grids results in remarkable saving of the computation time and memory requirement with dependency of the efficiency on the simulation model. This implies that ground motion for a realistic velocity structures including near-surface sediments can be modeled to high frequency (several Hz) without requiring severe computer memory

  • PDF

Non-linear rheology of tension structural element under single and variable loading history Part II: Creep of steel rope - examples and parametrical study

  • Kmet, S.;Holickova, L.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.5
    • /
    • pp.591-607
    • /
    • 2004
  • The substance of the use of the derived non-linear creep constitutive equations under variable stress levels (see first part of the paper, Kmet 2004) is explained and the strategy of their application is outlined using the results of one-step creep tests of the steel spiral strand rope as an example. In order to investigate the creep strain increments of cables an experimental set-up was originally designed and a series of tests were carried out. Attention is turned to the individual main steps in the production and application procedure, i.e., to the one-step creep tests, definition of loading history, determination of the kernel functions, selection and definition of constitutive equation and to the comparison of the resulting values considering the product and the additive forms of the approximation of the kernel functions. To this purpose, the parametrical study is performed and the results are presented. The constitutive equations of non-linear creep of cable under variable stress history offer a strong tool for the real simulation of stochastic variable load history and prediction of realistic time-dependent response (current deflection and stress configuration) of structures with cable elements. By means of suitable stress combination and its gradual repeating various loads and times effects can be modelled.

A Design of Current-Mode Analog FIR Filter for Wireless Home Network (주파수가변형 무선PAN단말을 위한 전류모드 아날로그 FIR 필터의 설계)

  • Kim, Seong-Kweon;Kim, Kwang-Ho;Cho, Ju-Phil;Cha, Jae-Sang
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.10
    • /
    • pp.35-40
    • /
    • 2006
  • In this paper, a current-mode analog variable finite-impulse-response (FIR) filter with variable tap coefficient circuits is proposed for frequency selective wireless personal area network(WPAN) system or terminals. From the circuit simulation the operation of the 7-tap FIR filter is confirmed. The 0.0625-step tap coefficient circuit is designed and fabricated with $0.8[{\mu}m]$ CMOS technology. The proposed FIR filter has a variable length of taps and variable coefficients, so it has a potential for being used to frequency selective WPAN system or frequency selective wireless communication terminals.

An application study of the optimal multi-variable structure control to the state space model of the robot system (로보트 시스템의 State space 모델에 대한 최적 다중-변화 구조제어의 응용연구)

  • 이주장
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.321-325
    • /
    • 1986
  • A new control scheme for the state space model of the robot system using the theory of optimal multi-variable structure is presented in this paper. It is proposed to optimize multi-dimensional variable structure systems for obtaining the required stabilizing signal by minimizing a performance index with respect to the state vector in the sliding mode. It is concluded the proposed variable structure controller yields better system dynamic performance than that obtained by using the only linear optimal controller inthat responses for a step disturbance have a shorter setting time, no matter what overshoot values and rising time.

  • PDF

Fast Motion Estimation Using Local Statistics of Neighboring Motion Vectors (인접 블록 움직임 벡터의 지역적 통계 특성을 이용한 고속 움직임 추정 기법)

  • Kim, Ki-Beom;Jeong, Chan-Young;Hong, Min-Cheol
    • Journal of Broadcast Engineering
    • /
    • v.13 no.1
    • /
    • pp.128-136
    • /
    • 2008
  • In this paper, we propose a variable step search fast motion estimation algorithm using local statistics of neighboring motion vectors. Using the degree of correlation between neighboring motion vectors, motion search range is adaptively adjusted to reduce unnecessary search points. Based on the adjusted search range, motion vector is obtained by variable search step. Experimental results show that the proposed algorithm has the capability to dramatically reduce the search points and computing cost for motion estimation, comparing to fast full spiral search motion estimation and other fast motion estimation.

Performance Evaluation of a Dual-Mode Blind Equalization Algorithm Using the Size of Decision-Directed Error Signal for High-Order QAM Signals (고차 QAM 신호에 대한 결정 지향 오차 신호의 크기 값을 이용한 이중 모드 블라인드 등화 알고리즘의 성능 분석)

  • Jeong, Young-Hwa
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.89-95
    • /
    • 2016
  • In this paper, we propose a dual-mode blind equalization algorithm that two of the blind equalization algorithm using the size of the decision-directed error signal is automatically switched. The proposed algorithm has a faster convergence speed due to operation of the MSAGF-SMMA with large fixed step-size mainly in the initial equalization. After the equalization has been made to some extent, the proposed algorithm has a smaller residual error in the steady- state by operation of the MSAGF-SMMA with a variable step-size mainly. The variable step-size is determined by multiplying the size of the decision-directed error signal of a fixed step-size. In this paper, we analyze the performance of the proposed algorithm. The computer simulation results demonstrate that the proposed algorithm has a significantly improved performance in terms of a residual inter-symbol interference and residual error in the steady-state compared with the MMA, SMMA, and MSAGF-SMMA.