• 제목/요약/키워드: Variable Displacement Hydraulic Pump

검색결과 31건 처리시간 0.023초

유압 트랜스포머를 이용한 유압 실린더의 에너지 절감에 관한 연구 (A study of Energy Saving Hydraulic Cylinder System Using Hydraulic Transformer)

  • 안경관;이민수;조용래;윤주현;조우근;윤홍수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1075-1080
    • /
    • 2007
  • In order to reduce energy consumption, secondary controlled system has been applied to many types of equipments. In lifting equipments or press machines using hydraulic cylinder, a hydraulic transformer is used as a control component instead of a valve for motion control and a component for recovering potential energy of load. The transformer is a combination of a variable displacement pump/motor as a secondary controlled element and a fixed displacement pump/motor. In this paper the effect of transformer is studied. Multiple closed loop controllers with displacement feedback of variable pump/motor, speed feedback and position feedback of cylinder are used. The efficiency and energy consumption when cylinder is driven up and down is calculated by simulation. Simulation results show that considerable energy saving is achieved by choosing load ratio, circuit type and supply pressure.

  • PDF

EHA용 가변용적형 사판식 유압 피스톤 펌프의 하이브리드 제어 (Hybrid control of the swash plate-type variable displacement hydraulic piston pump for an EHA)

  • 권용철;홍예선
    • 한국항공우주학회지
    • /
    • 제41권4호
    • /
    • pp.291-298
    • /
    • 2013
  • 본 논문에서는 압력보상형 사판식 유압 피스톤 펌프와 밸브 제어형 실린더를 결합한 EHA에 대하여 유압 실린더의 소비 유량이 작으면 펌프 회전 속도를 낮추는 새로운 개념의 하이브리드형 제어 시스템을 제안하였다. 펌프 내 압력조절기의 사판각 제어와 간섭을 피하기 위해 위치 명령 신호의 속도 성분 평균치를 이용하여 펌프의 회전속도를 조절하였고, 시스템 압력이 기준치 이하로 낮아지는 것을 방지하기 위해 압력 스위치 기능을 추가하였다. 시뮬레이션과 실험 결과에 의하면, EHA의 동적인 응답 특성에 영향을 주지 않는 조건에서 하이브리드 제어를 통해 공전 모드에서의 펌프 회전속도를 1,800rpm에서 600rpm로 낮춤으로써 하이브리드 제어를 안 할 경우에 비해 펌프 구동 동력을 약 44%까지 절감시킬 수 있음을 확인하였다.

가변 용적형 사판식 피스톤 펌프의 회전 속도 조절에 의한 정압 제어 소비 동력 절감 (Reduction of Power Consumption for Constant Pressure Control of Variable Swash Plate-type Piston Pump by Varying the Pump Speed)

  • 김종혁;홍예선
    • 드라이브 ㆍ 컨트롤
    • /
    • 제11권4호
    • /
    • pp.53-60
    • /
    • 2014
  • This paper proposes a control scheme to reduce the power consumption of a variable displacement swash-plate type piston pump supplying oil to a valve-controlled hydraulic cylinder at constant pressure. Whenever flow rate demand was absent, the swash plate angle and the pump speed were changed to the minimum values required to compensate for the internal leakage flow. In response to command signals, the pump speed was changed in proportion to the absolute mean value of the speed component for position commands. At the same time, a pressure regulator was activated to maintain constant system pressure by precisely adjusting the pump speed with the swash plate angle fixed at the maximum. The conventional system consisting of a pressure-compensated variable displacement type pump is driven at a constant speed of 1,800rpm. By comparison, computer simulation and experimental results showed that idling power at stand-by status could be reduced by up to 70% by reducing the pump speed from 1,800rpm to 300rpm and the swash plate angle to the minimum.

유압펌프용 SRM 구동 시스템의 특성해석 (Characteristics Analysis of SRM Drive System for Hydraulic Pump)

  • 이주현;김봉철;김태형;안진우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.83-86
    • /
    • 2005
  • This paper proposed a hydraulic pump system which uses a variable SR drive and constant capacity pump. The base and maximum speed, torque are determined from displacement capacity of the pump and maximum pressure. The drive system is set to have a minimum power consumption having hydraulic preset pressure, which is operated within a maximum capacity and maximum preset pressure. This is achieved by controlling motor speed and power with feedback signal of pressure of the hydraulic pump. A 2.2kw, 12/8-pole SR motor and DSP based digital controller are designed and prototype drive system is manufactured. The proposed variable speed SR drive system is simulated and tested with experimental set-up. The test results show that the system has some good features such as high efficiency and high response characteristics.

  • PDF

자동변속기용 가변 용량 베인 펌프의 파워 절감 효과 평가에 대한 실험적 연구 (Experimental Research on the Power Saving Effect Evaluation of a Variable Displacement Vane Pump for an Automatic Transmission)

  • 김철수;배철용;김찬중;김규식;손태관
    • 한국자동차공학회논문집
    • /
    • 제22권7호
    • /
    • pp.1-7
    • /
    • 2014
  • A variable displacement vane pump is possible to improve the fuel economy by varying the pump capacity with a vane mechanism according to the engine operating speed range and reducing its driving torque. In general the experimental evaluation of the vane pump for the transmission has been performed mainly not with the vehicle or dynamometer test rig but with component test rig due to the implementation and safety problems. In this paper, in order to evaluate the performance of the developed vane pump as well as the compatibility with other rotary and hydraulic components of the target transmission, the transmission dynamometer based test rig is implemented where the developed pump is built into it and then the variable pump capacity and effect of power reduction are investigated experimentally.

유압 트랜스포머를 이용한 에너지 절감형 유압시스템에 관한 기초연구 (A study on Energy Saving Hydraulic System Using Hydraulic Transformer)

  • 이민수;안경관;조용래;조우근
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.917-922
    • /
    • 2008
  • In order to reduce energy consumption, secondary controlled system has been applied to many types of equipments. In lifting equipments or press machines using hydraulic cylinder, a hydraulic transformer is used as a control component instead of a valve for motion control and a component for recovering potential energy of load. The transformer is combination of a variable displacement pump/motor as a secondary controlled element and a fixed displacement pump/motor. Based on the nominal model derived from mathematical model, the feedback type two-degree-of-freedom controller is designed and implemented. From simulation results, the disturbances including nonlinear friction torque, leakage flow and load force can be compensated and good positioning accuracy is obtained. It show that the proposed controller is effective.

  • PDF

소형 어선용 주기구동 유압식 고주파수 발전장치에 관한 연구 ( 1 ) - 유압펌프 제어방식 - (Hydraulic Constant Frequency Generation System Driven by Main Engine for Small Fishing Boat - Hydraulic Pump Control Type -)

  • 이일영;박상길;정용길
    • 수산해양기술연구
    • /
    • 제24권1호
    • /
    • pp.30-35
    • /
    • 1988
  • An electrical power generation system driven by main engine shaft, briefly SG system for middle or small size fishing boat is studied experimently. In the SG system, power transmission is performed by a variable displacement hydraulic pump driven by the main engine and a constant displacement hydraulic motor. It was verified that the SG system enabled the generation of electrical power with constant frequency regardless main engine speed. In the SG system, setting reference frequency, sensing generator output frequency and setting controller parameters are performed by performed by programming in a microcomputer, so a countermeasure for physical situations of control object is very easy. Futhermore, the SG system has following features; low initial installation cost, wide freedom of installation in engine room, advantage of application in existing ships, especially fishing boat with hydraulic fishing equipments.

  • PDF

사판식 피스톤 펌프 흡입구의 유동 특성에 관한 연구 (A Study on the Flow Characteristics of a Swash-Plate Piston-Pump Inlet)

  • 이정실;전차수
    • 한국기계가공학회지
    • /
    • 제20권10호
    • /
    • pp.56-62
    • /
    • 2021
  • In this study, a cavitation occurrence in a piston-pump inlet was investigated by simulating the pressure distribution, according to the inlet shape of a variable-displacement swash-plate piston pump that supplies high-pressure oil to control the hydraulic system of a marine engine. Two types of pump inlets with different shapes were cast into impression models, and the models were reverse-engineered by 3D scanning. Then, the hydraulic-pressure distribution was analyzed through finite-element analysis. The results of the analysis confirmed that cavitation occurs more easily in the inlet with a steeper slope during pump operation because the inlet pressure on the valve plate is lower than that of the other pump with a gentler inlet slope.