• 제목/요약/키워드: Variable Damping

검색결과 184건 처리시간 0.026초

직교화와 SVD를 도입한 광학설계의 최적화기법에 대한 연구

  • 김기태
    • 한국광학회지
    • /
    • 제4권4호
    • /
    • pp.363-372
    • /
    • 1993
  • 설계변수의 직교화와 SVD(singular value decomposition)를 최적화에 도입하고, 이를 double-Gauss형 사진렌즈계에 적용시켜 최적화의 수렴성과 안정성을 일반적인 최소자승법, 감쇠최소자승법의 경우와 비교하였다. 최적화에서 정규방정식의 조건수(고유값의 최대, 최소값의 비)가 최적화의 불안정성과 밀접한 관련이 있다는 것은 이미 알려져 있다. 본 연구에는 SVD를 도입하여 조건수를 제한하여 본 결과 최적화의 안정성이 매우 증진 되었으며, 감쇠최소자승법에서 적은 감쇠항을 주고 직교화와 SVD를 적용시킨 경우가 가장 빠르고 안정하게 수렴하였다. 이것은 변수의 직교화와 SVD가 감쇠최소자승법에서 적은 감쇠항을 줄 때 생기는 불안정성을 잘 극복하고 있음을 나타내고 있다.

  • PDF

MR 댐퍼의 비선형해석을 이용한 반능동형 제진대에 관한 연구 (A Study on Semi-active Vibration Isolation Table using a Nonlinear Analysis of the MR Damper)

  • 김도영;전종균;권영철
    • 한국소음진동공학회논문집
    • /
    • 제24권11호
    • /
    • pp.861-867
    • /
    • 2014
  • In this study, a semi-active isolator was constructed from applying a MR damper that used the MR fluid to an isolator. The parameter identification was also performed to determine the characteristics of this semi-active isolator during which the least squares method and the auxiliary variable method were applied to produce a value closest to the true value. In addition, the MR damper's nonlinear damping force was closely analyzed to greatly reduce the range of error. Based on this analysis, it was discovered that the parameter tended to increase with more electric current. Such analysis of the dynamic properties of semi-active isolator proved that constructing an isolator that provides a more stable operation could be achieved.

Seismic performance-based optimal design approach for structures equipped with SATMDs

  • Mohebbi, Mohtasham;Bakhshinezhad, Sina
    • Earthquakes and Structures
    • /
    • 제22권1호
    • /
    • pp.95-107
    • /
    • 2022
  • This paper introduces a novel, rigorous, and efficient probabilistic methodology for the performance-based optimal design (PBOD) of semi-active tuned mass damper (SATMD) for seismically excited nonlinear structures. The proposed methodology is consistent with the modern performance-based earthquake engineering framework and aims to design reliable control systems. To this end, an optimization problem has been defined which considers the parameters of control systems as design variables and minimization of the probability of exceeding a targeted structural performance level during the lifetime as an objective function with a constraint on the failure probability of stroke length damage state associated with mass damper mechanism. The effectiveness of the proposed methodology is illustrated through a numerical example of performance analysis of an eight-story nonlinear shear building frame with hysteretic bilinear behavior. The SATMD with variable stiffness and damping have been designed separately with different mass ratios. Their performance has been compared with that of uncontrolled structure and the structure controlled with passive TMD in terms of probabilistic demand curves, response hazard curves, fragility curves, and exceedance probability of performance levels during the lifetime. Numerical results show the effectiveness, simplicity, and reliability of the proposed PBOD method in designing SATMD with variable stiffness and damping for the nonlinear frames where they have reduced the exceedance probability of the structure up to 49% and 44%, respectively.

중력에 의해 진동하는 2단 축방향 전개 보의 유한요소 모델링 (Finite Element Modeling of 2-stage Axially Deploying Beams Vibrating Under Gravity)

  • 윤원상;배규현;범희락;홍성욱
    • 한국생산제조학회지
    • /
    • 제21권2호
    • /
    • pp.202-207
    • /
    • 2012
  • Multi-stage deploying beams are useful for transporting parts or products handling in production lines. However, such multi-stage beams are often exposed to unwanted vibration due to the presence of their flexibility and time-varying properties. This paper is concerned with dynamic modeling and analysis of 2-stage axially deploying beams under gravity by using the finite element method. A variable domain finite element method is employed to develop the dynamic model. A rigorous method to account for engagement of two-stage beams during the deploying procedure is introduced by breaking the entire domain into three variable domains. Several deploying strategies are tested to analyze the residual vibrations. Several examples are illustrated to investigate the self-induced damping and the effects of deploying strategy on the vibrations.

PI 타입 도달 법칙을 가지는 가변구조 제어 (Variable structure control with a PI-type reaching law)

  • 금길수;전경한;최봉열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.387-390
    • /
    • 1996
  • In this paper, A new PI-type reaching law for variable structure control is proposed to alleviate the chattering and improve the robustness properties in the presence of matched uncertainty. The proposed reaching law consists of a proportional term and an integral term. And the dynamics of switching function can easily be specified by using the second-order system analysis method. And also the proposed scheme has the advantages of alleviating the chattering than Gao's one and reducing the influence of uncertainties by band pass filter characteristic. The efficiency of the proposed method has been demonstrated by simulations for Dutch Roll damping in a light aircraft.

  • PDF

승용차용 반능동형 가변댐퍼 시스템의 개발 (Development of the Semi-Active Controlled Variable Damper System for Passenger Vehicles)

  • 허승진;심정수;황성호
    • 소음진동
    • /
    • 제8권4호
    • /
    • pp.683-689
    • /
    • 1998
  • A control algorithm for multi-stage dampers is developed based on the mode skyhook control concept, and implemented on the full vehicle system environment. The test vehicle system is equipped with the real time controller, four-stage variable dampers and sensors. The real time controller is developed using a digital signal processor(DSP), digital I/O, A/D and D/A converters. The dampers are driven by the electromagnetic actuators of less than 20 msec response time. The sensors include accelerometers, relative displacement transducers, and steering wheel rate sensors, etc. Through a series of tests in laboratory and proving ground, the performance of the semi-active suspension system is evaluated and it is shown that the vehicle dynamic characteristics is improved with the developed damping system. Futhermore, the parameter tuning methods to enhance vehicle dynamic performance are propsoed.

  • PDF

붐방제기용 주행속도 보상식 유량제어부의 동특성 (Flow Compensating Characteristics for the Speed Variation of a Boom Sprayer)

  • 구영모;정재은
    • Journal of Biosystems Engineering
    • /
    • 제23권2호
    • /
    • pp.115-124
    • /
    • 1998
  • Over- and under-application of pesticides to crops have recently become main concerns regarding the environment conservation, product cost and firmer's safety. Thus, a uniform and optimal application method of pesticides was needed. The objective of study was to evaluate flow compensating characteristics of a variable flow control system for a boom sprayer using a laboratory setup. At the most variable conditions, the control system was acceptable with the flowrate control strategy. However, the sprayer control system became unstably fluctuating at the long execution time with small tolerance because of the constant valve on-time. This problem was solved by employing a variable on-time control. The optimal values for the damping ratio and the execution time were 2 and 1.0 sec, respectively, with the tolerances less than 3%. The performance of the control system at the optimal conditions were the response time of 3.8sec and the absolute steady-state error of 0.5% with the stable RCV and ROS ( < 1.0).

  • PDF

자동차용 충격 흡수기의 동적거동 해석 (Dynamic Behaviour Analysis of Shock Absorber on Vehicle)

  • Park, J.W.;Shin, S.Y.;Lee, S.B.
    • 한국정밀공학회지
    • /
    • 제14권6호
    • /
    • pp.28-36
    • /
    • 1997
  • Even if the shock absorber is developed to Variable S/V or Active S/A, it is necrssary to construct database or bulid the dynamic performance characteristic program of Oil S/A. Since both Variable S/A and Active S/A are based on the principle of Oil S/A. To obtain the design technique of Oil S/A, we model the daping mechanism and characteristics of an Oil S/A whose performance was testified. And then it is analyzed the dynamic behaviour characteristics of damping mechanism.

  • PDF

작동유체 질량을 고려한 유연우주트러스구조물 제진용 반능동 댐퍼의 성능분석 (Performance Investigation of Semi-Active Damper Considering Mass Modeling of Functional Fluid)

  • 오현웅;최영준;이경민
    • 한국항공우주학회지
    • /
    • 제37권5호
    • /
    • pp.450-456
    • /
    • 2009
  • 수동형 진동제어 방식과 같이 시스템이 안정되며, 수동형에 비해 높은 제진 효과가 기대되는 반능동 진동제어 방식은 시스템의 안정화가 요구되는 우주구조물의 제진방법에 유효한 진동제어 방식중 하나이다. 본 논문에서는 유연우주트러스구조물의 진동제어를 위해 고안된 반능동 댐퍼내 작동유체의 질량을 모델링에 고려했을 경우의 제진특성을 분석하였고 댐퍼내 작동유체의 점성이 부족감쇠를 유지 할 경우, 작동유체 질량 적용에 따른 반능동 댐퍼의 제진효과를 확인하였으며 이를 토대로 반능동 댐퍼의 성능향상을 위한 설계방법을 제시하였다.

인공위성의 미동현상 제어에 관한 연구 (THE NUTATION DAMPING CONTROL OF A SPACECRAFT)

  • 이창훈
    • Journal of Astronomy and Space Sciences
    • /
    • 제11권2호
    • /
    • pp.281-295
    • /
    • 1994
  • 본 논문에서는 운동량 바이어스 안정화된 인공위성의 능동 미동 제동율 위한 자동 제어기의 설계에 새로운 연속의 스위칭 방정식율 도입한 가변구조 시스댐 이론을 사용하였다. 일반적으로 미동 제동을 갖고 있는 션형화된 다변수 시스템에 가변구조 이론을 적용할 때, 스위칭 이득을 어떻게 결정해야 하는지, 진동 현상과 입력과 상태 궤적에 도달기간을 어떻게 줄여야 하는지 등의 단점을 갖고 있다. 이러한 문제를 해결하기 위해서 본 논문에셔는 슬라이딩 모드를 얻기 위한 불연속의 스위칭 로직 대신에 연속의 스위칭 방정식을 제시하였다. 이 새로운 접근방법은 기존의 가변구조 이론에 의한 방법보다 훨씬 간단하고, 구해진 제어입력이 연속이므로 진동현상이 없으며, 동시에 설계인자를 적절하게 선정하므로써 도달기간을 줄일 수 있게 된다.

  • PDF