• Title/Summary/Keyword: Variable Constant Current

Search Result 133, Processing Time 0.028 seconds

Flyback AC-DC Converter with Low THD Based on Primary-Side Control

  • Chang, Changyuan;He, Luyang;Cao, Zixuan;Zhao, Dadi
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1642-1649
    • /
    • 2018
  • A single-stage flyback LED AC-DC converter based on primary-side control under constant current mode is proposed in this study. The proposed converter features low total harmonic distortion (THD) and high power factor (PF). It also consists of a zero-crossing distortion compensation circuit and a variable duty ratio control compensation circuit to deal with the line current distortions caused by fixed duty ratio control. The system model and layout are built in Simplis and Cadence, respectively. The feasibility and performance of the proposed circuit is verified by designing and fabricating an IC controller in the HHNEC $0.35{\mu}m$ 5 V/40 V HVCMOS process. Experimental results show that the PF can reach a level in the range of 0.985-0.9965. Moreover, the average THD of the entire system is approximately 10%, with the minimum being 6.305%, as the input line voltage changes from 85 VAC to 265 VAC.

Analytical and multicoupled methods for optimal steady-state thermoelectric solutions

  • Moreno-Navarro, Pablo;Perez-Aparicio, Jose L.;Gomez-Hernandez, J.J.
    • Coupled systems mechanics
    • /
    • v.11 no.2
    • /
    • pp.151-166
    • /
    • 2022
  • Peltier cells have low efficiency, but they are becoming attractive alternatives for affordable and environmentally clean cooling. In this line, the current article develops closed-form and semianalytical solutions to improve the temperature distribution of Bi2Te3 thermoelements. From the distribution, the main objective of the current work-the optimal electric intensity to maximize cooling-is inferred. The general one-dimensional differential coupled equation is integrated for linear and quadratic geometry of thermoelements, under temperature constant properties. For a general shape, a piece-wise solution based on heat flux continuity among virtual layers gives accurate analytical solutions. For variable properties, another piece-wise solution is developed but solved iteratively. Taking advantage of the formulae, the optimal intensity is directly derived with a minimal computational cost; its value will be of utility for more advanced designs. Finally, a parametric study including straight, two linear, barrel, hourglass and vase geometries is presented, drawing conclusions on how the shape of the thermoelement affects the coupled phenomena. A specially developed coupled and non-linear finite element research code is run taking into account all the materials of the cell and using symmetries and repetitions. These accurate results are used to validate the analytical ones.

32-Channel Bioimpedance Measurement System for the Detection of Anomalies with Different Resistivity Values (저항률이 다른 내부 물체의 검출을 위한 32-채널 생체 임피던스 측정 시스템)

  • 조영구;우응제
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.6
    • /
    • pp.503-510
    • /
    • 2001
  • In this paper. we describe a 32-channel bioimpedance measurement system It consists of 32 independent constant current sources of 50 kHz sinusoid. The amplitude of each current source can be adjusted using a 12-bit MDAC. After we applied a pattern of injection currents through 32 current injection electrodes. we measured induced boundary voltages using a variable-gain narrow-band instrumentation amplifier. a Phase-sensitive demodulator. and a 12-bit ADC. The system is interfaced to a PC for the control and data acquisition. We used the system to detect anomalies with different resistivity values in a saline Phantom with 290mm diameter The accuracy of the developed system was estimated as 2.42% and we found that anomalies larger than 8mm in diameter can be detected. We Plan to improve the accuracy by using a digital oscillator improved current sources by feedback control, Phase-sensitive A/D conversion. etc. to detect anomalies smaller than 1mm in diameter.

  • PDF

The development and operation characteristics analysis of PCS applied PV Output Senseless (POS) MPPT (PV Output Senseless (POS) MPPT 제어법이 적용된 단상 PCS 개발 및 운전특성 분석)

  • Lee, Seok-Ju;Park, Hae-Yong;Kim, Gyeong-Hun;Seo, Hyo-Ryong;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.226-227
    • /
    • 2007
  • The purpose of this study for photovoltaic (PV) generation system is to keep the output power of photovoltaic cells maximized under any weather conditions. In a conventional MPPT (Maximum Power Point Tracking) control method, both voltage and current coming out from PV array have to be fedback. Thus, the system has a complex structure, and may fail to track MPP of PV array when unexpected weather conditions happen. This paper proposes a novel PV Output Senseless (POS) control method to solve the mentioned problem. The main advantage of this method is that the current flowing into load is the only one considerable factor. In case of a huge PV generation system, it can be operated much more safely than the conventional system. To verify this theory, results that compare and analyze the simulated data with experimental data under real weather condition of the manufactured PV generation system are shown in this paper. Authors vividly states that this theory uses constant resistors and variable resistors of DC-DC converter in PV system. Authors emphasize that it is a very useful method to maximize power from PV cells to load with only the feedback of load current. Authors also emphasize that this theory is applicable in case of the PCS in PV power generation system.

  • PDF

Development and Verification of Analytical Model of a Pilot Operated Flow Control Valve for 21-ton Electric Excavator (21톤급 전기 굴삭기용 파일럿 작동식 유량제어 밸브의 해석모델 개발 및 검증)

  • Kim, D.M.;Nam, Y.Y.;Seo, J.H.;Jang, J.S.
    • Journal of Drive and Control
    • /
    • v.12 no.3
    • /
    • pp.52-59
    • /
    • 2015
  • An electro hydraulic poppet valve (EHPV) and a variable orifice poppet are assembled in a single block, which is referred to as a RHINO but is also generally called a pilot-operated flow control valve. In this study, we analyzed the structure and the operating principle for a RHINO applied in a 21-ton electric excavator system. The RHINO was experimentally tested to measure the dynamic responses and the pressure energy loss. In this test, we investigated the variation in the conductance coefficient according to the increase in the supply pressure under a constant current and a variation in the flow rate according to the increase in the current. Then, the geometrical shapes and the spring stiffness of the RHINO were considered to develop an analysis model. The characteristics (current-force and hysteresis) for the solenoid based on the experimental data were reflected in the analysis model that was developed, and the reliability of the analysis model was also verified by comparing the experimental and analytical results. The developed model is thus considered to be reliable for use in a wide range of applications, including optimum design, sensitivity analysis, parameter tuning, etc.

Harmonics Control of Electric Propulsion System using Direct Torque Control (직접벡터제어방식을 사용하는 전기추진시스템의 고조파 제어)

  • Kim, Jong-Su;Oh, Sae-Gin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2618-2624
    • /
    • 2009
  • Harmonics (or distortion in wave form) has always existed in electrical power systems. It is harmless as long as its level is not substantial. However, with the recent rapid advancement of power electronics technology, so-called nonlinear loads, such as variable frequency drives for motor power/speed control, are increasingly finding their way to shipboard or offshore applications. In this paper a new approach to direct torque control (DTC) of induction motor drive is presented. In comparison with the conventional DTC methods the inverter switching frequency is constant and is dramatically increased, requiring neither any increase of the sampling frequency, nor any high frequency dither signal. The well-developed space vector modulation technique is applied to inverter control in the proposed DTC-based induction motor drive system, thereby dramatically reducing the current harmonics. As compared to the existing DTC approach with constant inverter switching frequency, the presented new approach does not invoke any concept of deadbeat control, thereby dramatically reducing the computations.

The Fatigue Evaluation of Structural Steel Members under Variable-Amplitude Loading (변동하중을 받는 강구조부재의 피로거동 해석)

  • Chang, Dong Il;Kwak, Jong Hyun;Bak, Yong Gol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.167-175
    • /
    • 1988
  • The principle objective of this study is to evaluate the fatigue behavior of structural steel components of highway bridges subjected to service stresses. The main aspects of this investigation are; 1) a measurement and statistical analysis of service stress cycles observed in highway bridge. 2) fatigue tests under equivalent constant-amplitude(CA) loading and simulated variable-amplitude(VA) loading 3) a evaluation of the fatigue behavior under VA-loading by eqivalent root mean cube (RMC) stress range. Theoretically, the RMC model is adequate in evaluation of fatigue behavior under VA-loading, because the regression coefficient (m) of crack growth rate is 3 approximately. The result of fatigue test shows that the RMC model is fitter than the current RMS model in fatigue evaluation under VA-loading. The interaction effects and sequence effects under VA-loading affect little fatigue life of structural components. As the transition rate of stress ranges is higher, the crack growth rate is higher.

  • PDF

Innovative Electromagnetic Induction Eddy Current-based Far Infrared Rays Radiant Heater using Soft Switching PWM Inverter with Duty Cycle Control Scheme

  • Tanaka H.;Sadakata H.;Muraoka H.;Okuno A.;Hiraki E.;Nakaoka M.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.64-68
    • /
    • 2001
  • This paper presents an innovative prototype of a new conceptual electromagnetic induction heated type far infrared rays radiant heating appliance using the voltage-fed edge-resonant ZVS-PWM high frequency inverter using IGBTs for food cooking and processing which operates under a constant frequency variable power regulation scheme. This power electronic appliance with soft switching high frequency inverter using IGBTs has attracted special interest from some advantageous viewpoints of safety, cleanliness, compactness and rapid temperature response, which is more suitable for consumer power electronics applications.

  • PDF

Design and Control Methods of Bidirectional DC-DC Converter for the Optimal DC-Link Voltage of PMSM Drive

  • Kim, Tae-Hoon;Lee, Jung-Hyo;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1944-1953
    • /
    • 2014
  • This paper shows the design and control methods of the bidirectional DC-DC converter to generate the proper DC-link voltage of a PMSM drive. Conventionally, because the controllable power of the PWM based voltage source inverter is limited by its DC-link voltage, the DC-DC converter is used for boosted DC-link voltage if the inverter source cannot generate enough operating voltage for the PMSM drive. In this paper, to obtain more utilization of this DC-DC converter, optimal DC-link voltage control for PMSM drive will be explained. First, the process and current path of the DC-DC converter will be illustrated, and a control method of this converter for variable DC-link voltage will then be explained. Finally, an improvement analysis of the optimal DC-link voltage control method, especially on the deadtime effect, will be explained. The DC-DC converter of the proposed control method is verified by the experiments by comparing with the conventional constant voltage control method.

A Study on Characteristic Analysis of High Frequency Generating Circuit Integrated Chopper-Inverter with High Power-Factor (고역률 초퍼-인버터 일체형 고주파 발생회로의 특성해석에 관한 연구)

  • Won Jae-Sun;Park Jae-Wook;Nam Seung-Sik;Lee Bong-Seob;Seok Jul-Ki;Kim Dong-Hee
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.10
    • /
    • pp.610-617
    • /
    • 2004
  • This paper presents a novel high frequency generating circuit integrated chopper-inverter using ZVS with high power-factor. The proposed topology is integrated half-bridge boost rectifier as power factor corrector(PFC) and half-bridge high frequency resonant inverter into a single-stage. The input stage of the half-bridge boost rectifier works in discontinuous conduction mode(DCM) with constant duty cycle and variable switching frequency. So that a boost converter makes the line current follow naturally the sinusoidal line voltage waveform. Simulation results have demonstrated the feasibility of the proposed high frequency resonant inverter. Characteristics values based on characteristics analysis through circuit analysis is given as basis data in design procedure. Also, experimental results are presented to verify theoretical discussion. This proposed inverter will be able to be practically used as a power supply in various fields as induction heating applications. fluorescent lamp and DC-DC converter etc.