• Title/Summary/Keyword: Variable Compression Ratio System

Search Result 27, Processing Time 0.027 seconds

CVT Power Transmitting Characteristics and Control Logics for Negative Torque (역방향 토크시 무단변속기 동력전달 특성과 제어로직)

  • 송한림;이희라;김현수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.255-264
    • /
    • 2002
  • In this paper, the power transmitting mechanism for negative torque of the metal V-belt (MVB) CVT were investigated by theoretically analyzing variation of band tension, block compression forces for each of the primary and secondary pulleys. An experimental study was performed to investigate the speed ratio - thrust characteristics for negative torque. The experimental results are in good acoordance with the theoretical results. CVT line pressure control logic was suggested for negative torque based the speed radio - negative torque - thrust characteristics and the thrust ratio curves. The results of this study can be used as basic design materials for developing the CVT control system for negative torque.

A Differential Index Assignment Scheme for Tree-Structured Vector Quantization (나무구조 벡터양자화 기반의 차분 인덱스 할당기법)

  • 한종기;정인철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.2C
    • /
    • pp.100-109
    • /
    • 2003
  • A differential index assignment scheme is proposed for the image encoding system in which a variable-length tree-structured vector quantizer is adopted. Each source vector is quantized into a terminal node of VLTSVQ and each terminal node is represented as a unique binary vector. The proposed index assignment scheme utilizes the correlation between interblocks of the image to increase the compression ratio with the image quality maintained. Simulation results show that the proposed scheme achieves a much higher compression ratio than the conventional one does and that the amount of the bit rate reduction of the proposed scheme becomes large as the correlation of the image becomes large. The proposed encoding scheme can be effectively used to encode R images whose pixel values we, in general, highly correlated with those of the neighbor pixels.

Simulation of Modeling Characteristics of Pumping Design Factor on Vacuum System

  • Kim, Hyung-Taek;Cho, Han-Ho
    • International journal of advanced smart convergence
    • /
    • v.5 no.2
    • /
    • pp.1-7
    • /
    • 2016
  • Recently, with the development of advanced thin film devices comes the need for constant high quality vacuum as the deposition pressure is more demanding. It is for this reason our research seeks to understand how the variable design factors are employed in such vacuum systems. In this study, the effects of design factor applications on the vacuum characteristics were simulated to obtain the optimum design modeling of variable models on an ultra high vacuum system. The commercial vacuum system simulator, $VacSim^{(multi)}$, was used in our investigation. The reliability of the employed simulator was verified by the simulation of the commercially available models of ultra high vacuum system. Simulated vacuum characteristics of the proposed modeling aligned with the observed experimental behavior of real systems. Simulated behaviors showed the optimum design models for the ideal conditions to achieve optimal pressure, pumping speed, and compression ratio in these systems.

Analysis of Primary and Secondary Thrust of a Metal Belt CVT Part I : New Formula for Speed Rtio-Torque-Thrust Relationship Considering Band Tension and Block Compression (금속벨트 CVT 의 구동 및 종동 드러스트 해석 Part I : 밴드 장력과 블록 압축력을 고려한 새로운 변속비-토크-트러스트 관계식)

  • 이희라;김현수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.132-142
    • /
    • 1999
  • In this paper, a new formula for primary and secondary thrust of metal belt CVT is proposed considering variation of band tension, block compression and active arc for each of the primary and secondary pulleys. For the secondary thrust, effective friction coefficient is introduced considering the effect of flange deflection. Nondimensional primary and secondary thrust of the metal belt CVT by the new formula agree well with the experimental results except for low torque range, $0\;<\;{\lambda}\;<\;0.2$ at speed ration i = 1.0. The new formula can be used in design of the primary and secondary thrusts control system for the metal belt CVT.

  • PDF

Performance Analysis of Variable Valve for Diesel Engine with Cam-in-Cam System (디젤엔진용 Cam-in-Cam시스템 적용 가변밸브 성능해석)

  • Jeong, S.C.;Park, J.M.;Kim, T.K.;Lee, J.W.
    • Journal of ILASS-Korea
    • /
    • v.22 no.1
    • /
    • pp.22-28
    • /
    • 2017
  • In this study, the effects of intake valve closing timing by using Cam-in-Cam system on combustion and emission characteristics for diesel engine were investigated under GT-POWER simulation environment. As a result, it was found that volumetric efficiency and effective compression ratio were decreased as the intake valve closing(IVC) timing is retarded due to its backflow effect. Also, we found that in-cylinder pressure, heat release rate and NOx emission were decreased as IVC timing was retarded. These show that the LIVC(late intake valve closing) can be effective to control AFR and mixing rate in diffusion combustion of diesel engine.

ENGINE CONTROL USING COMBUSTION MODEL

  • Ohyama, Y.
    • International Journal of Automotive Technology
    • /
    • v.2 no.2
    • /
    • pp.53-62
    • /
    • 2001
  • The combination of physical models of an advanced engine control system was proposed to obtain sophisticated combustion control in ultra-lean combustion, including homogeneous compression-ignition and activated radical combustion with a light load and in stoichiometric mixture combustion with a full load. Physical models of intake, combustion and engine thermodynamics were incorporated, in which the effects of residual gas from prior cycles on intake air mass and combustion were taken into consideration. The combined control of compression ignition at a light load and sparit ignition at full load for a high compession ratio engine was investigated using simulations. The control strategies of the variable valve timing and the intake pressure were clarified to keep auto-ignition at a light load and prevent knock at a full load.

  • PDF

Improvement of Image Compression Using Quantization Technique in Computed Tomography Images (CT영상에서 양자화기법을 이용한 영상압축의 개선)

  • Park, Jae-Hong;Yoo, Ju-Yeon;Park, Cheol-Woo
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.4
    • /
    • pp.505-510
    • /
    • 2018
  • In this study, we allocate bits by quantizing these fractal coefficients through a quantizer which can extract the probability distribution. In the coding process of IFS, a variable size block method is used to shorten the coding time and improve the compression ratio. In the future, it will be necessary to further improve the coding time and the compression rate while maintaining the best image quality in the fractal coding process.

A Detailed Analysis of the Part Load Ratio and Cooling Energy Characteristics of Chiller Operation in an Office Building (사무소 건물에서 냉동기의 부분부하율 및 냉방 에너지 성능 특성 분석)

  • Seo, Byeong-Mo;Yu, Byeong-Ho;Lee, Kwang-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.11
    • /
    • pp.567-573
    • /
    • 2015
  • Commercial buildings account for significant portions of the total building energy in Korea, and thus, a variety of research on chiller operation has been carried out. However, most of the studies were carried out on the chiller itself, i.e., the part load ratio characteristics and the corresponding electricity energy consumption patterns were not analyzed in existing studies. In this study, the part load ratio and the operating characteristics of the vapor compression chiller were analyzed within an office building equipped with the conventional variable air volume system. As a result, significant portions of total operating hours, cooling load, and energy consumption turned out to be in the part load ratio range of 0 through 50%. Thus, energy consumption was significantly affected by the chiller COP at low part load conditions, indicating that chiller operation at the part load is an important factor in commercial buildings.

Variable Inlet Design for Hypersonic Engines with a Wide Range of Flight Mach Numbers (광대역 마하수 비행을 위한 극초음속 엔진 흡입구의 가변형상 설계)

  • Kang, Sang Hun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.65-72
    • /
    • 2015
  • In present study, a supersonic inlet for dual mode ramjets or RBCC/TBCC engines with a wide range of flight Mach numbers is designed. A conical variable inlet configuration is chosen for the inlet design. Geometric relations with angles of compression cones and conical shock waves are used for the design of the inlet configuration. The performance of the supersonic inlet is confirmed by the numerical analysis. The capture area ratio is maintained around 100% from Mach 3 to 8 conditions.

A Study on Engine Performance at the Intake Air Compensation by Supercharging in the Low Speed Diesel-Atkinson Cycle (과급에 의한 흡입공기 보상 시 저속 디젤-아트킨슨사이클에서 엔진성능에 대한 연구)

  • Jang, Tae-Ik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1009-1015
    • /
    • 2011
  • In this study, in the high expansion cycle was conduced by variable valve timing system composition to close intake valve late, and in the intake air reduction on the low compression was solved by supercharging pressure. In this wise, by constituting Diesel-Atkinson cycle, this study looked into a possibility of thermal efficiency improvement. As a result, there was improvement in thermal efficiency and output in a whole range of closing timing from ABDC $40^{\circ}$ to ABDC $80^{\circ}$. However, after ABDC $70^{\circ}$ of closing timing, the thermal efficiency increase was getting smaller. As the result of the study, the optimum intake valve closing timing was about ABDC $70^{\circ}$, high loading territory of engine was more effective than low loading territory, and engine operation in middle loading territory was stable. At this time, brake thermal efficiency was 12.5% higher than ordinary engine on average.