• 제목/요약/키워드: Variable Clustering

검색결과 155건 처리시간 0.02초

An Agglomerative Hierarchical Variable-Clustering Method Based on a Correlation Matrix

  • Lee, Kwangjin
    • Communications for Statistical Applications and Methods
    • /
    • 제10권2호
    • /
    • pp.387-397
    • /
    • 2003
  • Generally, most of researches that need a variable-clustering process use an exploratory factor analysis technique or a divisive hierarchical variable-clustering method based on a correlation matrix. And some researchers apply a object-clustering method to a distance matrix transformed from a correlation matrix, though this approach is known to be improper. On this paper an agglomerative hierarchical variable-clustering method based on a correlation matrix itself is suggested. It is derived from a geometric concept by using variate-spaces and a characterizing variate.

Variable Selection and Outlier Detection for Automated K-means Clustering

  • Kim, Sung-Soo
    • Communications for Statistical Applications and Methods
    • /
    • 제22권1호
    • /
    • pp.55-67
    • /
    • 2015
  • An important problem in cluster analysis is the selection of variables that define cluster structure that also eliminate noisy variables that mask cluster structure; in addition, outlier detection is a fundamental task for cluster analysis. Here we provide an automated K-means clustering process combined with variable selection and outlier identification. The Automated K-means clustering procedure consists of three processes: (i) automatically calculating the cluster number and initial cluster center whenever a new variable is added, (ii) identifying outliers for each cluster depending on used variables, (iii) selecting variables defining cluster structure in a forward manner. To select variables, we applied VS-KM (variable-selection heuristic for K-means clustering) procedure (Brusco and Cradit, 2001). To identify outliers, we used a hybrid approach combining a clustering based approach and distance based approach. Simulation results indicate that the proposed automated K-means clustering procedure is effective to select variables and identify outliers. The implemented R program can be obtained at http://www.knou.ac.kr/~sskim/SVOKmeans.r.

On the Categorical Variable Clustering

  • Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • 제7권2호
    • /
    • pp.219-226
    • /
    • 1996
  • Basic objective in cluster analysis is to discover natural groupings of items or variables. In general, variable clustering was conducted based on some similarity measures between variables which have binary characteristics. We propose a variable clustering method when variables have more categories ordered in some sense. We also consider some measures of association as a similarity between variables. Numerical example is included.

  • PDF

A Variable Selection Procedure for K-Means Clustering

  • Kim, Sung-Soo
    • 응용통계연구
    • /
    • 제25권3호
    • /
    • pp.471-483
    • /
    • 2012
  • One of the most important problems in cluster analysis is the selection of variables that truly define cluster structure, while eliminating noisy variables that mask such structure. Brusco and Cradit (2001) present VS-KM(variable-selection heuristic for K-means clustering) procedure for selecting true variables for K-means clustering based on adjusted Rand index. This procedure starts with the fixed number of clusters in K-means and adds variables sequentially based on an adjusted Rand index. This paper presents an updated procedure combining the VS-KM with the automated K-means procedure provided by Kim (2009). This automated variable selection procedure for K-means clustering calculates the cluster number and initial cluster center whenever new variable is added and adds a variable based on adjusted Rand index. Simulation result indicates that the proposed procedure is very effective at selecting true variables and at eliminating noisy variables. Implemented program using R can be obtained on the website "http://faculty.knou.ac.kr/sskim/nvarkm.r and vnvarkm.r".

Gene Expression Pattern Analysis via Latent Variable Models Coupled with Topographic Clustering

  • Chang, Jeong-Ho;Chi, Sung Wook;Zhang, Byoung Tak
    • Genomics & Informatics
    • /
    • 제1권1호
    • /
    • pp.32-39
    • /
    • 2003
  • We present a latent variable model-based approach to the analysis of gene expression patterns, coupled with topographic clustering. Aspect model, a latent variable model for dyadic data, is applied to extract latent patterns underlying complex variations of gene expression levels. Then a topographic clustering is performed to find coherent groups of genes, based on the extracted latent patterns as well as individual gene expression behaviors. Applied to cell cycle­regulated genes of the yeast Saccharomyces cerevisiae, the proposed method could discover biologically meaningful patterns related with characteristic expression behavior in particular cell cycle phases. In addition, the display of the variation in the composition of these latent patterns on the cluster map provided more facilitated interpretation of the resulting cluster structure. From this, we argue that latent variable models, coupled with topographic clustering, are a promising tool for explorative analysis of gene expression data.

Pre-Adjustment of Incomplete Group Variable via K-Means Clustering

  • Hwang, S.Y.;Hahn, H.E.
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권3호
    • /
    • pp.555-563
    • /
    • 2004
  • In classification and discrimination, we often face with incomplete group variable arising typically from many missing values and/or incredible cases. This paper suggests the use of K-means clustering for pre-adjusting incompleteness and in turn classification based on generalized statistical distance is performed. For illustrating the proposed procedure, simulation study is conducted comparatively with CART in data mining and traditional techniques which are ignoring incompleteness of group variable. Simulation study manifests that our methodology out-performs.

  • PDF

연속형 자료에 대한 나무형 군집화 (Tree-structured Clustering for Continuous Data)

  • 허명회;양경숙
    • 응용통계연구
    • /
    • 제18권3호
    • /
    • pp.661-671
    • /
    • 2005
  • 본 연구는 반복분할(recursive partitioning)에 의한 군집화 방법을 개발하고 활용 예를 보인다. 노드 분리 기준으로는 Overall R-Square를 채택하였고 실용적인 노드 분리 결정 방법을 제안하였다. 이 방법은 연속형 자료에 대하여 나무 형태의 해석하기 쉬운 단순한 규칙을 제공하면서 동시에 변수선택기능을 제공한다. 환용 예로서 Fisher의 붓꽃데이터와 Telecom 사례에 적용해 보았다. K-평균 군집화와 다른 몇 가지 사항이 관측되었다.

다구찌 디자인을 이용한 앙상블 및 군집분석 분류 성능 비교 (Comparing Classification Accuracy of Ensemble and Clustering Algorithms Based on Taguchi Design)

  • 신형원;손소영
    • 대한산업공학회지
    • /
    • 제27권1호
    • /
    • pp.47-53
    • /
    • 2001
  • In this paper, we compare the classification performances of both ensemble and clustering algorithms (Data Bagging, Variable Selection Bagging, Parameter Combining, Clustering) to logistic regression in consideration of various characteristics of input data. Four factors used to simulate the logistic model are (1) correlation among input variables (2) variance of observation (3) training data size and (4) input-output function. In view of the unknown relationship between input and output function, we use a Taguchi design to improve the practicality of our study results by letting it as a noise factor. Experimental study results indicate the following: When the level of the variance is medium, Bagging & Parameter Combining performs worse than Logistic Regression, Variable Selection Bagging and Clustering. However, classification performances of Logistic Regression, Variable Selection Bagging, Bagging and Clustering are not significantly different when the variance of input data is either small or large. When there is strong correlation in input variables, Variable Selection Bagging outperforms both Logistic Regression and Parameter combining. In general, Parameter Combining algorithm appears to be the worst at our disappointment.

  • PDF

가변 그룹 벤치마킹 모형과 범주형 변수모형을 이용한 아시아 컨테이너항만의 클러스터링측정 및 추세분석에 관한 실증적 연구 (An Empirical Study on the Measurement of Clustering and Trend Analysis among the Asian Container Ports Using the Variable Group Benchmarking and Categorical Variable Models)

  • 박노정
    • 한국항만경제학회지
    • /
    • 제29권1호
    • /
    • pp.143-175
    • /
    • 2013
  • 본 논문에서는 아시아 항만들 간의 클러스터링 추세를 분석하기 위해서 가변그룹벤치마킹모형과 범주형 변수모형에 대해서 이론적으로 설명하고, 아시아 38개 항만들의 9 년간 자료를 4개의 투입요소(선석길이, 수심, 총면적, 크레인 수), 1개의 산출요소(컨테이너화물처리량)를 이용하여 특정국가의 항만그룹 또는 특정항만을 대상으로 클러스터링 하는 방법을 실증적으로 보여 주고 분석하였다. 실증분석의 주요한 결과는 다음과 같다. 첫째, 가변그룹벤치마킹모형에 의한 중국항만을 벤치마킹하는 경우의 클러스터링 추세분석을 측정한 결과를 보면, 상해항, 청도항, 닝보항의 클러스터링 역할이 커진 것으로 나타났다. 둘째, 컨테이너화물처리량을 중심으로 한 범주형 변수모형에 의한 클러스터링 추세분석 결과를 살펴보면 중국이외의 항에서는 싱가포르항, 키롱항, 두바이항, 카오슝항이 클러스터링의 중심항만들로 나타났다. 셋째, 아카바, 두바이, 홍콩,상하이, 광저우, 닝보 항만들이 지역적으로 근접한 항만들끼리 클러스터링을 위해서 기본이 되는 효율적인 항만들로 나타났다. 넷째, 지역별 항만의 위치를 중심으로 한 범주형변수모형에 의한 클러스터링의 측정한 결과를 살펴보면, 두바이항과 코르파칸항, 홍콩항과 상하이항, 싱가포르항과 키롱항, 닝보항, 클러스터링의 중심항만이 되고 있는 추세를 보여 주었다. 전체적으로 보았을 때, 두바이항, 코르파칸항, 상하이항, 홍콩항, 닝보항, 싱가포르항 등이 아시아 항만들과 클러스터링을 해야만 하는 항만들로 나타났다. 본 논문이 갖는 정책적인 함의는 항만정책입안자들이 본 연구에서 사용한 두 가지 모형을 항만의 클러스터링에 도입하여 해당항만이 발전할 수 있는 전략을 수립하고 이행해 나가야만 한다는 점이다.

혼합형 데이터에 대한 나무형 군집화 (Tree-structured Clustering for Mixed Data)

  • 양경숙;허명회
    • 응용통계연구
    • /
    • 제19권2호
    • /
    • pp.271-282
    • /
    • 2006
  • 본 논문에서는 범주형과 연속형 변수들이 혼합된 데이터에 적용할 수 있는 나무형 군집화 알고리즘을 제안하였다. 특히 혼합된 변수들이 공통의 의미를 갖도록 하기 위해 범주형 변수들을 전처리하는 방법을 고안하였다. 수치 예로서 SPSS의 신용(credit) 데이터와 독일신용자료(German credit data)에 알고리즘을 적용하고 그 결과를 검토하였다.