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Abstract

An important problem in cluster analysis is the selection of variables that define cluster structure that also
eliminate noisy variables that mask cluster structure; in addition, outlier detection is a fundamental task for clus-
ter analysis. Here we provide an automated K-means clustering process combined with variable selection and
outlier identification. The Automated K-means clustering procedure consists of three processes: (i) automatically
calculating the cluster number and initial cluster center whenever a new variable is added, (ii) identifying out-
liers for each cluster depending on used variables, (iii) selecting variables defining cluster structure in a forward
manner. To select variables, we applied VS-KM (variable-selection heuristic for K-means clustering) procedure
(Brusco and Cradit, 2001). To identify outliers, we used a hybrid approach combining a clustering based ap-
proach and distance based approach. Simulation results indicate that the proposed automated K-means clustering
procedure is effective to select variables and identify outliers. The implemented R program can be obtained at
http://www.knou.ac.kr/~sskim/SVOKmeans.r.

Keywords: Automated K-means clustering, variable selection, outlier detecting, VS-KM, adjusted
rand index, Mahalanobis distance.

1. Introduction

The K-means clustering method assigns a case to the cluster for which the distance to the smallest
cluster mean. It starts with an initial partition with user-given k clusters, and repeatedly reassigns
cases to the closest cluster’s center and updates partitions. The K-means clustering does not require
computation of all possible pairwise distances of cases and only requires looping steps of calculating
centroids of new clusters and reassigning cases to closest clusters; therefore, it is easily applicable to
very large data sets and is widely used in data mining. However, K-means clustering has two crucial
problems - the number of clusters and initial centroids of clusters. The number of clusters should
be provided before clustering and the K-means cluster solution is dependent on initial centroids. To
be applicable to very large data sets, one of the possible solutions for these problems is to apply
the results of prior hierarchical clustering methods based on random small samples. This process
is consisted of the following two-stage clustering procedure (Kim, 2009). The first stage is to run
hierarchical clusters to obtain the number of clusters and cluster centroids based on random samples,
and the second stage is to run nonhierarchical K-means clustering using first stage results.

In clustering analysis, it has been frequently observed that only a limited subset of variables is
valuable to defined the cluster structure (Brusco and Cradit, 2001). Furthermore, the incorporation

This paper was supported by Korea National Open University Research Fund in 2012.
! Department of Information Statistics, Dongsung-dong, Jongno-gu, Seoul 110-791, Korea. E-mail: sskim@knou.ac kr

Published 31 January 2015/ journal homepage: http://csam.or.kr
©2015 The Korean Statistical Society, and Korean International Statistical Society. All rights reserved.



56 Sung-Soo Kim

of masking variables which do not define cluster structure may complicate or obscure the recov-
ery of cluster structure during hierarchical or nonhierarchical cluster analysis (Milligan, 1980, 1989;
Fowlkes and Mallows, 1983; Brusco and Cradit, 2001). For the general approaches to identify mask-
ing variables in cluster analysis, see Gnanadesikan et al. (1995) and Brusco and Cradit (2001). For
the variable selection in K-means clustering, Carmone et al. (1999) proposed a graphical variable-
selection procedure, named HINoV (heuristic identification of noisy variables) based on the adjusted
Rand (1971) index of Hubert and Arabie (1985). Brusco and Cradit (2001) proposed a heuristic
variable-selection procedure, VS-KM (variable-selection heuristic for K-means clustering). This pro-
cedure utilizes the adjusted Rand index like HINoV, and adds variables in a forward manner as well
as uses between-cluster and total sum-of-squares information.

K-means clustering is sensitive to outliers. Outliers are the set of objects that are considerably
dissimilar from the remainder of the data (Jayakumar and Thomas, 2013) and can be considered as
data points that do not conform to normal points that characterize the data set (Pamula ez al., 2011).
As a clustering point of view, outliers can be defined as small clusters that are far from most of points
(Jiang et al., 2001). Detecting outliers is an important task with a direct application in a wide variety of
application domains such as fraud detection, stock market analysis, intrusion detection, and marketing
(Pamula et al., 2011; Jayakumar and Thomas, 2013). When doing K-means clustering, the task of
outlier detection should be performed for the results to be stable as well as to detect outliers. In this
paper we will provide automated K-means clustering procedure combined with variable selection and
outlier detection. Automated K-means clustering consists of the following functions.

1) It automatically determines the number of clusters and initial centroids of clusters whenever a new
variable is added.

2) It automatically selects a subset of variables which are valuable to define cluster structure and
effective to reduce the influence of variables with minimal contribution to the cluster structure.

3) Itidentifies outliers whenever a new variable is added in a forward manner.

When terminating automated K-means clustering, we can select subset of variables to find cluster
structure and detect outliers. Also, through 3), we can reveal the relationship between the variables
and outliers. We will review some approaches to select variables and to detect outliers in Section 2,
and provide the detailed automated K-means clustering process in Section 3. R implementation and
simulation results are provided in Section 4, and concluding remarks are provided in Section 5.

2. Review of Variable Selection and Outlier Detection for K-means Clustering

Here we will provide a description of VS-KM (variable-selection heuristic for K-means clustering)
and we will describe the outlier detection method for automated K-means clustering.

2.1. Variable-Selection heuristic

Carmone et al. (1999) proposed a variable selection method, HINoV (heuristic identification of noisy
variables), based on the principle that a good measure of actual recovery might be useful to guide the
selection of cluster variables to include in the analysis. They used the adjusted Rands (1971) index by
Hubert and Arabie (1985) to measure the agreement of partitions.

Brusco and Cradit (2001) developed a heuristic variable-selection procedure, VS-KM(variable-
selection heuristic for K-means clustering) that builds on the strengths of HINoV and adds variables
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in a forward manner as well as uses information about the between-cluster and total-sum-of-squares,
similar to the Fowlkes e al. (1988) method. This procedure begins by selecting first two variables
considering the adjusted Rand index and the ratio of between cluster sum-of squares to the total sum-
of-squares, and then adds a variable in a forward manner. For detailed description of VS-KM, see
Brusco and Cradit (2001).

In VS-KM process, the number of fixed clusters for a K-means partition should be given in ad-
vance and the process of adding variables is applied for fixed number of clusters. However, the
number of clusters is generally unknown and can vary depending on used input variables. Hence,
it is recommended that the number of cluster be decided automatically for each variable instead of
fixed number of clusters. In the VS-KM method, the first two selected variables play an important
role since variables with a similar shape of clusters of the first two variables are added independently
systematically. VS-KM computes the ratio of the between cluster sum-of-squares to the total sum-of
squares for all the possible pairs of partition to avoid the initial selection of masking two variables
which have a large Rand index due to a high correlation. However, it is recommended that we choose
several pairs of variables which have the highest adjusted index and only compute the ratio of these
selected variable since the main index of selecting variables is an adjusted Rand index.

The VS-KM method is effective to select significant variables. However, it still has two crucial
problems of K-means clustering-the number of clusters and initial centroids. The number of clusters
and initial centroids can vary according to selected variables; therefore, it is recommended that we
combine the variable-selection process with the automatic decision of the number of clusters whenever
anew variable is added to the previously selected variables instead of continuing the variable-selection
process with a fixed number of clusters.

2.2. Outlier detection for K-means clustering

An outlier is an observation that deviates from other observations as to arouse suspicions that it was
generated by a different mechanism (Hawkins, 1980) and is also defined as a noisy observation that
does not fit to the assumed model that generated the data (Hautamaki et al., 2005). Outlier detection
is an important task in a wide variety of application domains such as credit card fraud detection,
medical anomaly detection, and industrial damage detection. There have been many approaches to
detect outliers, which are categorized as statistical tests based on Mahalanobis distance, depth-based
approaches, deviation-based approaches, distance-based approaches, density-based approaches and
clustering-based approaches. For a brief review of these approaches, refer to Pamula ef al. (2011),
Jayakumar and Thomas (2013) and Kriegel ef al. (2010). However, all these approaches to detect
outliers are based on fixed user-input variables. Outliers can be dependent on the input variables;
consequently, it is helpful to show the relationships between outliers and selected variables if we can
detect outliers while we systematically add variables.

Outliers can be categorized as two parts, global and local outliers. Global outlier means that it is
far isolated from the center of data set, i.e., observation inconsistent with rest of the data set. Local
outlier is an observation inconsistent with its neighborhoods. It is noted that global outliers are not
always outliers since they can be considered as another cluster if there are some cases over some
threshold compared to the total number of cases. Our focus is to find local outliers. To detect local
outliers, we adopt hybrid approaches that combine clustering-based approaches and distance-based
approaches similar to the approaches used by Pachgade and Dhande (2012). The data set is partitioned
into Kclusters using K-means clustering in hybrid approaches; subsequently, the (robust) Mahalanobis
distance is calculated with each instance for each cluster. Since squared (robust) Mahalanobis distance
is asymptotically distributed as y>-distribution and all points whose distance is larger than threshold,
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for example x*(0.975) or x*(0.99), will be declared as “potential outlier”. For the detailed use of
Mahalanobis distance and Robust Mahalanobis distance to detect outliers, see Rousseeuw and Leroy
(1987), Rousseeuw and van Zomeren (1990), Rocke and Woodruff (1996) and Bartkowiak (2005).
Also small clusters (i.e., clusters containing significantly less points than other clusters) are considered
potential outliers (Jayakumar and Thomas, 2013).

3. Variable Selection and Outlier Detection for Automated K-means Clustering

The crucial problems of K-means clustering decide the number of clusters and initial centroids of
clusters. A variety of suggested methods may be helpful in particular situations. The results of K-
means clustering against the number of K values (or previous application of the hierarchical clustering
methods) can be used to solve problems. For details, see Everitt e al. (2001). It is very helpful for
users to explore the data in the data mining approach if the number of clusters can be provided without
the previous user-handling task.

Many approaches for the selection of the number of clusters in K-means clustering have been
tried. Recently Kim (2009) proposed a semi-automated K-means clustering procedure to determine
the number of clusters and initial centroids and Kim (2012) also combined a VS-KM procedure to
select variables. A semi-automated K-means clustering procedure can be described as: This procedure
selects random sample from a large data sets and applies Ward’s (1963) hierarchical method and
Mojena’s (1977) rule to determine the number of clusters. After repeating this step several times, the
number of clusters and initial centroids are determined and K-means clustering is proceeded using
full data sets. When this procedure is combined with the VS-KM method, we can see the role of
variables in a forward manner in K-means clustering since a new result of K-means clustering is
obtained whenever a new variables is added to the existing input variables and we can then get the
selected variables in the final step. It is noted that K-means clustering is sensitive to outliers, and
outliers can also be dependent on the selected variables in K-means clustering. Hence if outliers can
be identified while in the process of variable selection, automated K-means clustering can provide
information about variable selection and outlier detection.

Our focus is on variable selection and outlier detection in K-means clustering; therefore, we use
the following two-stage K-means clustering procedure instead of semi-automated K-means clustering.
Two-stage K-means clustering procedure (we refer to this procedure as TStep-KM) can be stated as:

(Two- Stage K-means clustering procedure: TStep-KM)

Step 1. Select random sample from full data sets using simple random sampling or full data sets.

Step 2. Apply Ward’s clustering method and decide the number of clusters using Mojena’s Rule and
obtain cluster centers

Step 3. Run K-means clustering using full data sets.

Step 1 of this procedure can be effective when data sets are large, as used by many approaches
(Banfield and Raftery, 1993; Brusco and Credit, 2001; Wehrens et al., 2004). In Step 2, we applied
Ward’s clustering method and used Mojena’s Rule (Mojena, 1977; Mojena et al., 1980) to decide the
number of clusters. Mojena’s Rule can be stated as:
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(Mojena’s Rule)

Generate h = (hy, ho, ..., h,—1) where h; is the minimum Euclidean error sum of squares at which
fusion takes place in stage j and n is the number of objects in the data matrix. We determine the
number of clusters in stage satisfying A > h + ks, where h and s, are, respectively, the mean and
standard deviation of n — 1 values, and £ is the standard deviate value.

To decide the number of clusters, we can use the other decision rules. For general studies of
choosing the number of clusters, see Milligan and Cooper (1985). Now we describe detailed procedure
of variable selection and outlier detection for K-means clustering as:

(Variable selection and outlier detection for K-means clustering)

Step 0. Initialize - choose the options of data transformation, sampling, Mojena’s constant value

Step 1. Run TStep-KM procedure and develop a partition, p;, of clusters using only variable j, for
j=1,2,...,D where D is the number of variables.

Step 2. Compute the adjusted Rand index for all D(D — 1)/2 pairs of partitions p; and p, (j =
1,2,...,D-1,k=j+1,...,D) and find two variables showing highest top 5 adjusted Rand
index.

Step 3. Compute the ratio of between cluster sum-of-squares to the total sum-of-squares, g, only
of two variables showing highest top 5 adjusted Rand index, where gy = g, for j =
1,2,....,.D-landk=j+1,...,D.

Step 4. Select two variables which have the highest ratio of between cluster sum-of-squares to the
total sum-of-squares. Let j* and k' denote two variables and set S = S (J{j/,k'} and U =
U - {j’,k'}, where is the set of variables selected for inclusion in the cluster analysis and is
the set of unselected variables.

Step 5. Using selected variables, run TStep-KM procedure and develop a partition y that defines a
partition developed using variables j € § and apply outlier detection procedure.

Step 6. For each unselected variable j € U, run K-means clustering and compute the adjusted Rand
index between selected variables in Step 5 and unselected variables.

Step 7. Let 1 = Maxcy(G;). If A < G, 0r A < 17+ G s4c, then go to Step 8. Otherwise, let j denote
the variable for which G = A, setnp = A, and setS =S8 (J{j’}, U =U - {j'}. If U = &, then
go to Step 8. Otherwise go to Step 5.

Step 8. Variables in § are selected for inclusion and variables in U are discarded. Run TStep-KM
procedure and apply outlier detection procedure using only the variables in S .

The main difference between VS-KM method and our proposed procedure is that VS-KM starts
with user-supplied fixed cluster number while the cluster number in our procedure is determined au-
tomatically. Therefore the cluster number can be changed when a new variable is added in a forward
manner. Through Step 5, whenever a new variable is added, we can see the results of new K-means
clustering, and potential outliers are supplied. Hence, we can explore relationships between input
variables and outliers. In the variable selection process, we have a question on how to deal with po-
tential outliers. We process the variable selection process without removing potential outliers detected
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in earlier steps. Finding outliers is an exploratory work; therefore, we should carefully check the out-
liers again and decide how to deal with them after finding potential outliers. The effect of outliers in
the process of selecting variables can be another work and we hope to provide some further research
at a later time.

4. R Implementation and Experimental Results

We implemented R program (http://www.knou.ac.kr/~sskim/SVOKmeans.r). We use well known Iris
data sets and simulation data sets to show the effectiveness of our procedure for variable selection and
outlier detection. Simulation data sets are generated using the R package “clusterGeneration”.

4.1. Iris data sets

We provide the R implementation process using the Iris data sets to show the performance of our
proposed procedure since it is known to many users and easy to understand (Arai and Barakbah, 2007).
Iris data sets have three classes of Iris flowers (Setosa, Versicolor and Virginica) with 4 variables
(Sepal Length, Sepal Width, Petal Length and Petal Width). For simplicity the three classes are
named as (1, 2, 3) and 4 variables are ordered as (1, 2, 3, 4) in the results.

<R Console 1> Initial step of selecting options

> iris.data = iris[,-5]

> iris.mem = iris[,5]

> write(iris.mem, "c:/data/vsod/iris.mem", ncolumns=10)
> source("c:/vskm/SVOKmeans.r")

> SVOKmeans(data=iris.data)

Step 0-1: Standardize Variables ?
1. 0-1 Transform 2. Z-Score 3. Raw Data

Select(default:1): 3

Step 0-2: 1. Sampling 2. Full Data : # of data= 150

Select(default=1): 2

Step 0-3: Mojena's k for deciding the number of clusters(def=1.25): 1.25

Step 0-4: Parameter for Qutlier
- Mahal. distance(1=default) Robust Mahal. distance(2) : 1
- Chisq-quantile for outlier(def.=0.975): 0.975
- Ratio of cluster small size for outlier(def=0.03): 0.03

<R Console 1> shows the initial step of selecting options. We can choose options of data transfor-
mation in Step 0-1, Sampling or Full data in Step 0-2, Mojena’s K value in Step 0-3 and Parameters
for outliers in Step 0-4. If we choose large Mojena’s value, then it tends to choose a small num-
ber of clusters. Mojena et al. (1980) recommended the value of k < 2.5, and Milligan and Cooper
(1985) recommended the value of k = 1.25. As parameters for to detect detecting outliers, we pro-
vide options of choosing Mahalanobis or Robust Mahalanobis distance, chi-square quantile for the
threshold of outliers and the ratio of small cluster size for determining cluster-based outliers. When
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we choose Robust Mahalanobis distance, we provide an option to select robust method to compute
robust multivariate location and scale estimate(<R Console 3>).

<R Console 2> shows the repeating process of variable selection and outlier detection. The stop-
ping criteria for variable selection in Step 7 were based on parameter values of Gy, = 0.05 and
Gyrqe = 0.5. Step 6 shows the adjusted Rand indexes between pre-selected variables (3,4) and un-
selected variables (1), (2). We can see that variables 1 and 2 are added in a forward manner along
with the clustering results and potential outliers whenever a variable is added systematically conse-
quently, we can find some relationships between variables and outliers. SSB/SST stands for the ratio
of between-cluster sum of squares to the total sum of squares. High value of SSB/SST means that the
performance of clustering results for classification is good. From the results of SSB/SST, we can find
that the performance of the first two selected variables (3, 4) is higher than the (3,4, 1) and (3,4, 1,2)
variables. Last, the repeating result shows that selected variables are (3,4, 1,2), and local potential
outliers are 4 cases, and global outliers are 6 cases. Our focus is on the local outliers since they are
identified after K-means clustering. Global outliers provide insight into the identified outliers.

<R Console 2> Procedure of variable selection and outlier detection : Step 5-7

Step 5 : Results of first selected var's
Selected Var's=(34)
UnSelected Vars=(12)
Number of Cluster= 3
Cluster Sizes= 50 52 48
Potential Outliers(Local)= 44 99 25
Mahal. Distance(Local)= 3.376 3.144 2.86
Number of Outliers(Local)= 3
Potential Outliers(Global)= 115 135 142
Mahal. Distance(Global)= 3.214 2.938 2.745
Outlier Cutoff= 2.716
Number of Outliers(Global)= 3
SSB/SST = 059431

Step 6 : Adjusted Rand Index between Y and Unselected var's
[1]0.3968 0.1594 0.0000 0.0000

Step 7 : Repeating procedure for adding var's
Selected Var's=(341)
UnSelected Vars=1(2)
Number of Cluster= 3
Cluster Sizes= 50 62 38
Potential Outliers(Local)= 115 44 99 135 15
Mabhal. Distance(Local)= 3.842 3.505 3.328 3.318 3.184
Number of Qutliers(Local)= 5§
Potential Outliers(Global)= 135 115 142 107
Mahal. Distance(Global)= 3.39 3.356 3.229 3.133
Outlier Cutoff=3.058
Number of Qutliers(Global)= 4
SSB/SST = (.903

Repeat(Step5-6) : adj.max= 0.2525 which=(2)
Selected Var's=(3412)
UnSelected Vars= (=)
Number of Cluster= 3
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Cluster Sizes= 5062 38

Potential Outliers(Local)= 11542 44 132

Mabhal. Distance(Local)= 3.919 3.511 3.509 3.34

Number of Qutliers(Local)= 4

Potential Outliers(Global)= 132 135 118 142 42 115

Mahal. Distance(Global)= 3.62 3.589 3.58 3.527 3.38 3.378
Outlier Cutoff= 3.338

Number of Outliers(Global)= 6

SSB/SST = (.8843

<R Console 3> Last Results using robust Mahalanobis distance

Step 0-4: Parameter for Outlier
- Mahal. distance(1=default) Robust Mahal. distance(2) : 2
Robust Function : cov.mve(l1=def) cov.rob(2) cov.med(3) covMed(4): 1
- Chisg-quantile for outlier(def.=0.975): 0.975
- Ratio of cluster small size for outlier(def=0.03): 0.03

Step 8 : Last K-Means Results Using Selected Variables
Selected Vars =(3412)
UnSelected Vars = ( -)
Number of Cluster= 3
Cluster Size = 50 62 38
Potential Outliers(Local)= 132 118 119 123 106 136 44 108 42 131 115 126 24 110 130 33 23 99
Robust Mahal. Distance(Local)= 8.598 8.337 7.919 7.254 6.415 5.277 5.259 5.201 4977 4811 4.5
Number of Outliers(Local)= 21
Potential Outliers(Global)= 132 135 118 115 142 123 108 42 146 130 145 126 137 101 136 106
Robust Mahal. Distance(Global)= 4.832 4.718 4.701 4.629 4.506 4.018 3.985 3.967 3.956 3.855
Outlier Cutoff=3.338
Number of Outliers(Global)= 16
SSB/SST = 0.8843

<R Console 3> shows the options of robust Mahalanobis distance and outlier results. R package
chemometrics (Filzmoser and Varmuza, 2013) contain a function Moutlier to calculate the Maha-
lanobis distance and robust Mahalanobis distance. However, we provide a function to calculate robust
Mahalanobis distance using various algorithms since the Moutlier function is unstable depending on
the data sets used. From the result of outliers, we find that robust Mahalanobis distance is more sen-
sitive than the Mahalanobis distance to detect outliers. For reference, we hope to try other real data
sets such as Hawkins-Bradu-Kass data, Modified Wood Gravity data and Stackloss data which are
provided in R systems (In R systems, the name of data sets are hbk, wood, stackloss respectively) and
compare the results are provided by Bartkowiak (2005).

4.2. Simulation data sets

Simulation data sets are generated using the R package “clusterGeneration” developed by Qui and Joe
(20064a,b). We produced 18 (3 x 2 x 3) data sets considering the following 4 factors. Number of each
cluster cases ranges from 2000 to 4000.

A. Number of clusters = 3,4, 5
B. Cluster Separation = 0.21, 0.40
C. Number of true variables (noisy variables) = 4(2), 6(2), 8(2)
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D. Number of Outliers = 10

The R script for generating simulated clustering data is:

library(clusterGeneration)
# cluster=4, Sep=0.4, Var=6, Noisy=2. outliers=10
genRandomClust(numClust=4, sepVal=0.4,
mumNonNoisy=6, numNoisy=2, numQOutlier=10,
numReplicate=1, fileName="c:/data/vsod/cls v462 10", clustszind=2, rangeN=c(2000, 4000) )

The size of generated simulation data sets in cluster ranges from 2000 to 4000; therefore, it is
recommended to use sampling data to find initial cluster center for K-means and determine the number
of clusters. The results for 18 simulation data sets give similar results, so we only provide the results
using one of the generated data sets produced by the listed R scripts.

<R Console 4> Initial step of selecting options for simulated clustering data

=cls.v462 = read.table("c:/data/vsod/cls v462 10 1.dat".header=T)
=head(cls.v462)

xl x2 %3 x4 x3 X6 x7 x8
849928 2.480717 4.8003%5

111 8.173042 -15.822687 0.4944058 4.6258837 -8.147684
2 2.961294 -3.036412 4.780150 7.948143  2.994635 3.1003792 -0.2787702 3.840099
3 -3.946592 -4.093422 -7.076713 7.844510 -1.800446 3.6114040 -4.9670648 13.333173
4 4.536866 3.276747 8.483979 16.190117  6.907191 3.0973701 1.9950518 -2.288880
5 3.780257 6.939286 5.364083 5.009962  5.469241 -5.3185041 8.2094895 7.256754
6 -2.916995 -2.195306 -9.761634 2.418568 -9.356987 0.1854160 -6.8012440 1.246606

= SVOKmeans(data=cls.v462)

Step 0-1: Standardize Variables ?
1. 0-1 Transform 2.Z-Score 3.Raw Data

Select(default:1): 1

Step 0-2: 1. Sampling 2. Full Data : # of data= 10777
Select(default=1): 1
Type Sampling Rate (10-100%, def=10%) : 10

Step 0-3: Mojena's k for deciding the number of clusters(def=1.25):2.5

Step 0-4: Parameter for Outlier
- Mahal. distance( 1=default) Robust Mahal. distance(2): 1
- Chisq-quantile for outlier(def.=0.975): 0.995
- Ratio of cluster small size for outlier(def=0.03):0.003

<R Console 4> shows the initial step of selecting 0-1 transformation, sampling rate 10%, Mojena’s
value 2.5 and quantile value 0.995 to detect outliers.

<R Console 5> shows the last results of simulated clustering data. Here selected variables are
(3,5,1,2,7) in the order of adding variables to the first two selected variables (3,5) and identified
cluster-based potential outliers are 44 cases that covered 10 outliers in simulated clustering data.
Identified outliers and Mahalanobis distances are provided according to the descending order. The
result of Step 8 show that it interesting to find that the outliers in simulation data sets are identified as
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having the largest 10 Mahalanobis distances. For reference, we provide the adjusted Rand index and
confusion matrix with objects removing potential outliers from two clustering data sets. In this result,
adjusted Rand index and confusion matrix shows a perfect coincidence between two clustering data.

In the variable selection procedure, we note that the inclusion of noisy variables can cause serious
recovery problems even when all true variables are contained in selected variables, and as long as the
first true pair variables are selected, other true variables can be omitted without significant degradation
in cluster recovery (Milligan, 1985; Brusco and Cradit, 2001). We can see that noisy variables (4, 8)
are not selected and that the value of adjusted Rand indexes is high (even when true variable 6 is not
selected), which means that the process shows a high performance of cluster recovery. In identifying
outliers, we can see that there is some tendency to detect more outliers than outliers in the simulated
data sets. After finding potential outliers, it is better to check again why they are identified as outliers.
Generally, finding more outliers than in the data sets is not a serious problem, since it can be adjusted
by changing the cutoff value.

We have not listed the step by step results; however if we check the results as in <R Console 2>,
it will be more helpful to decide which variables to select as well as to explore the relation between
variables and outliers. Here, we listed only the results of potential outliers using Mahalanobis distance,
but we recommend identifying outliers using robust Mahalanobis distance as well as recommend to
run with other simulation data sets.

<R Console 5> Simulation results comparing original data and automated K-means clustering

Step 8 : Last K-Means Results Using Selected Variables
Selected Vars=(35127)
UnSelected Vars=( 46 8 )
Number of Cluster= 4
Cluster Size = 2278 2620 25853294
Potential Outliers(Local) = 10769 10770 10772 10774 10776 10777 10768 10773 10775 10771
Mahal. Distance(Local)= 15.90515.11413.90513.69813.44212.27611.81210.78 9.6467.073
Number of Outliers(Local)= 44
Potential Outliers(Global) = 10777 10768 10769 10770 10772 10776 10774 10775 2638 9949 6532
Mahal. Distance(Global)= 10.9510.60210.1169.6978.1157.5786.996.814 5.6975.2745.222
Outlier Cutoff= 4.093
Number of Outliers(Global)= 44
SSB/SST = 0.8257

Adjusted Rand Index ? - Simulated Data(1). Real Data(2), None(3=default): 1
--- original group member file : c:/data/vsod/cls_v462_10 1
Read 10777 items
Read 2 items

=====------ < Simulation Data by clusterGeneration = ----=-=-=—-

Original True Var's=(123567)

Original Noisy Var's=(4 8 )

Original Cluster Size = 102618 329025832276

Original Outliers= 10768 1076910770 10771 1077210773 10774 10775 10776 10777

--—-—---—- < Automated K-Means Clustering > ----------—-
Selected Var's=(12357)

UnSelected Var's=(46 8 )

Cluster Size = 22782620 25853294
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Potential Outliers(Local) = 10777 10776 10775 10774 10773 10772 10771 10770 10769 10768 10540 10498
Number of Potential Outliers(Local) = 44

Potential Outliers(Global) = 10777 10776 10775 10774 10772 10770 10769 10768 10564 10540 10127 9949
Number of Potential Outliers(Global)= 44

Adjusted Rand Index = 1

Confusion Matrix
cluster.id-
origin.cluster 1 2 3 4
1 02606 0 0
2 0 0 03277
3 0 02575 0
42275 0 0 0

5. Concluding Remarks

We presented the automated K-means clustering procedure combined with selecting variables and
identifying outliers. For variable selection process, we applied VS-KM method proposed by Brusco
and Cradit (2001). VS-KM method is a heuristic algorithm to select subsets of variables for inclusion
in a K-means cluster analysis. Hence it starts with a user-given fixed number of clusters and proceeds
to select variables with keeping the initial fixed number of clusters. However, it is recommended to
determine the number of clusters whenever a new variable is added to pre-selected variables since a
suitable number of clusters in K-means cluster analysis depends on selected variables.

The proposed automated K-means clustering procedure combines the VS-KM algorithm proposed
by Brusco and Cradit (2001) with a semi-automated K-Means procedure proposed by Kim (2009,
2012), and the identification of outliers is also applied to the variable selection process. Through the
automated K-means clustering process shown in <R Console 2>, we can see the results of variable
selection and identification of outliers systematically whenever a new variable is added in a forward
manner.

We provided the R scripts (www.knou.ac.kr/~sskim/SVOKmeans.r). In R implementation, we
used the Ward’s method and applied the Mojena’s Rule to determine the number of clusters. How-
ever, there are many approaches to determine the number of clusters such as model-based clustering
analysis (Banfield and Raftery, 1993; Fraley and Raftery, 1998), Gap approach (Tibshirani et al.,
2001). We hope that some researchers can implement these methods to supply results to users. To
detect potential outliers, we used a hybrid approach that combines a clustering based approach and
distance based approach using (robust) Mahalanobis distance. There are many other methods to detect
multiple outliers. We also hope these methods can be implemented. In the variable selection process,
we proceed variable selection without removing potential outliers. We hope further works show the
effect of outliers in the process of selecting variables. In our implementation, we need several options
as shown in <R Console 1>. The GUI approach is needed for the easier handling of the options and
represents a future work for a practical application for users. If some errors in R scripts are found, we
hope notification will be given to the author (sskim@knou.ac.kr).
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