Genomics & Informatics Vol. 1(1) 32-39, September 2003

Gene Expression Pattern Analysis via Latent Variable
Models Coupled with Topographic Clustering

Jeong-Ho Chang, Sung Wook Chi, and Byoung-
Tak Zhang*

Biointelligence Laboratory, School of Computer Science and
Engineering, Seoul National University, Seoul, Korea

Abstract

We present a latent variable model-based approach
to the analysis of gene expression patterns, coupled
with topographic clustering. Aspect model, a latent
variable model for dyadic data, is applied to extract
latent patterns underlying complex variations of gene
expression levels. Then a topographic clustering is
performed to find coherent groups of genes, based
on the extracted latent patterns as well as individual
gene expression behaviors. Applied to cell cycle-
regulated genes of the yeast Saccharomyces
cerevisiae, the proposed method could discover
biologically meaningful patterns related with
characteristic expression behavior in particular cell
cycle phases. In addition, the display of the variation
in the composition of these latent patterns on the
cluster map provided more facilitated interpretation of
the resulting cluster structure. From this, we argue
that latent variable models, coupled with topographic
clustering, are a promising tool for explorative
analysis of gene expression data.
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Introduction

DNA microarrays from cDNA chips or oligonucleotide chips
provide a global, parallel view on the expression patterns of
hundreds or thousands of genes in a cell at a specific time,
under a specific experimental conditions or processes
(Baldi and Hatfield, 2002; Shamir and Sharan, 2002). They
are among the most powerful and versatile tools for
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functional genomics, and advances in technologies for
these high-density arrays are enabling to produce
enormous amount of expression data. For the efficient
exploration and analysis of these massive microarray data,
appropriate analysis tools are needed which are different
from conventional methods for the traditional one-gene-in-
one-experiment paradigm.

Clustering is a key step to analyzing gene expression
data, where genes are systematically grouped together
according to their similarity in expression pattemns. Among
the earliest and extensively used algorithms are
hierarchical clustering (Eisen et al., 1998; Spellman et al.,
1998; Schert et al., 2000) and k-means (Herwig et al.,
1999; Tavazoie et al., 1999). Eisen et al. (Eisen et al.,
1998) analyzed the gene expression data of budding yeast
Saccharomyces cerevisiae using the hierarchical clustering
algorithm and showed that genes of known similar
functions were grouped together with the clustering.
Tavazoie et al. (Tavazoie et al., 1999) used the k-means
algorithm to identify transcriptional regulatory sub-networks
in yeast. Despite their successful applications in many
other biological tasks as well as these, however, the
algorithms suffer from some shortcomings, such as lack of
robustness, incompetence of proper handling of global
structure (hierarchical clustering) and non-structure in
resulting clusters (k-means clustering) (Tamayo et al.,
1999; Fowlkes et al., 2002).

In this paper, we present an effective approach for gene
expression pattern analysis, based on latent variable
models and topographic clustering. Latent variable models
are a powerful tool for discovering latent structure
underlying data objects. They are well suited to extract
correlational patterns of variables and provide a compact,
useful representation of data. Also, a natural similarity
metric between data can be derived from latent variable
models (Jaakkola and Haussler, 1999; Tsuda et al., 2002).
Topographic clustering algorithms such as SOM (self-
organizing maps) (Kohonen, 1997) are an attractive
method for providing not only good clustering performance
but also easy visualization and interpretation of the results
(Tamayo et al., 1999; Térdnen et al., 1999).

We use an aspect model that is a latent variable model
for co-occurrence data to extract significant patterns
underlying gene expression data. Using these pattems and
original expression data, two cluster maps are produced
from a topographic clustering. In the first map, each cluster
is represented by the average expression levels of genes
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Fig. 1. The overall procedure for gene expression profiling based on latent variable models coupled with topographic clustering.

in the cluster. The second map summarizes the clusters in
terms of its characteristics in convex combinations of latent
patterns.

We applied our method to the expression data of cell cycle-
regulated genes of the yeast Saccharomyces cerevisiae.
Our results show that the latent patterns discovered by the
aspect model are well reflecting the characteristic
expression behaviors across various cell cycle phases.
Two independent cluster maps provided by topographic
clustering are shown to be useful in their ability to provide
an intuitive, integrated understanding of complex variations
of hundreds of genes during the progress of cell cycle.

Materials and Methods

Our approach to gene expression analysis consists of
three steps: (1) identification of meaningful patterns
inherent in gene expression data using a latent variable
model; (2) construction of a similarity matrix containing
similarity values of all gene pairs; (3) clustering of genes
based on the similarity matrix and a topographic clustering
algorithm. Fig. 1 summarizes the overall procedure of our
approach to gene expression data analysis.

Latent pattern analysis based on aspect model

As the first step to the analysis of gene expression data,
we use an aspect model (Hofmann, 2001) which is a latent
variable model for co-occurrence data. Latent variable
models are a powerful approach to probabilistic modeling
where a set of observed variables are supplemented with
additional latent variables (Bishop, 1999). Besides their
efficiency for density estimation, the latent variable models

are very useful in discovering latent structure underlying a
set of data.

Let D be an NxM matrix where M is the number of data
and N is the number of attributes and each element is
indexed by (a, x), (1<i<M, 1<j<N). In the aspect model,
the joint probability of P(a;, x) is decomposed by introducing
a latent class variable z=7={z.z> -, ¢},

P(ajsxi):P(xi)P(aj lx,)

K 1
= P(‘xi)zp(aj |Zk)P(Zk |xi)' ( )

This indicates that the conditional probability or sample
specific attribute distribution P(a; | x)is approximated by a
convex combination of K aspects P(a | z¢). The goal of the
modeling by the aspect model is to estimate class-specific
attribute distribution P(w | zx) and data specific class
distribution P(z | x)) from data set.

Formally, the aspect model is learned by maximizing the
log data-likelihood L=log p(D):

M N
L=Y"%ra,,x)logP(a;,x,), @)
=l j=1
where r(a, x) is the value of g, in the data x. The
Expectation-Maximization (EM) algorithm (Dempster et al.,
1977) is used to estimate the parameters maximizing L. In
the E-step, the posterior probabilities P(z: | @, x) are
computed and in the M-step, the parameters P(a | z:) and
P(z | x) are estimated. These two steps are iteratively
alternated until convergence.
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Estimating similarity by the fisher kernel

One of the most important things in clustering algorithms is
how to define (dis)similarity measure between data, and
the choice is quite subjective. In kernel methods like
support vector machines (Cristianini and Shawe-Taylor,
2000; Scholkopf and Smola, 2001), this corresponds to
selecting an appropriate kermel function.

Given two data vectors x and x; in the input space X, a valid
kernel function k(x, x) can be represented as the inner
product between two feature vectors in a (high
dimensional) feature space F, that is,

k(x,, X;) = ($(x),0(x ), @)

where ¢ is a fixed mapping from X to F, that is, ¢ :X—F.
The mapping ¢ can be viewed as a preprocessing step to
draw out meaningful features from data, and the technique
of kernel function provides an efficient way of inner-product
calculation in the feature space F (Cristianini and Shawe-
Taylor, 2000; Graepel et al., 1998).

In this paper, we utilize the kernel function presented in
{Hofmann, 2000), where an intrinsic kernei, named the
Fisher kernel, was derived from the aspect model. The
Fisher kernel (Jaakkola and Haussler, 1999) is an
approach to constructing kernels from generative
probabilistic models and defines the similarity between
data based on information-geometric principles using the
gradient space of the generative model.

Let /(x:) be the expected log-probability of a sample x:
under the aspect model parameterized by 0=, 6z} where
61={P(z:) and @.={P(ailzs)}. The kernel is derived by
computing the Fisher scores ! (x:;) and the Fisher
information matrix 7 (6)=E{Vel (x)V+"[ (x)}. With the square-
root transformation of parameters 6={6:.6.} and the
approximation of I (f) as the identity matrix (Hofmann,
2000), the kernel from the aspect model is given by

k(x,x,) = Val(x)I©) " V,l(x,)

~ kl(xi’xj)+k2(xi’xj)’ @
where
k,(x,.,xj) = Vgll(xi)Vell(xj)
P %)P(z | %)
RO ©
k2(xi>xj) = V9T2l(xi)ve2l(xj) (6)
P(z, |a,,x,)P(z, | a;,x,)

=Y P(a,|x)P(a, | x))
Z ! r ; Plg,|z,)

Here, p{a, x;) in the Equation (6) is an empirical distribution

estimated by r(a.x)/) r(a,.x) Eventually, this similarity

metric is the linear summation of k& and k. with equal

weights: ki(x, x) is the similarity in the representation on the

latent space. k:(x, x) calculates the inner product of the
original two data x; and x;, where products of the
corresponding attributes are weighted by the degree of
overlap of respective posterior probabilities (the second line
in Equation (6)) (Hofmann, 2000).

Clustering by kernel-based soft topographic
mapping

The kemel-based soft topographic mapping (STMK)
(Graepel et al. 1998) is a topographic clustering algorithm
based on ketnel-based distance measures and principles
from statistical physics. It can provide not only a stable and
good clustering algorithm, but also a topographic map of
the clustered data. By using a specific kernel function and
the kemel trick, the algorithm can also perform clustering
efficiently in a feature space related to the original data
space in a nonlinear way, compared to the basic SOM.

In the SMTK, clustering is defined in terms of an
optimization problem. The cost function E to be optimized
is given as

M C

E= Z:,Z]m,-,-e,-j 7
=l j=

where M is the number of data and C is the number of
clusters. The binary variable m; indicates whether the ith
sample belongs to the jth cluster, and e; is the error
occurred by assigning the ith sample to the jth cluster.
Given a mapping ¢ from input space X to a feature space
F as explained above, the partial assignment cost e; is
defined as

1 C
& =33 )
23

where ¢ (x) and ¢ are a sample and a cluster center in a
feature space F, respectively. i is a neighborhood function
between jth and ith clusters, and determines the coupling
between the two clusters as in SOM.

The STMK algorithm provides an efficient procedure to
find a good solution to the minimization of the cost function
in Equation (7), based on deterministic annealing (Rose et
al., 1990) and the EM algorithm. Starting with a random
initialization of e; for all data and clusters, the algorithm
fteratively updates the parameters using the EM algorithm
with some temperature-annealing schedule. In the E-step,
expectation values of m;, the probability that the ith sample
is assigned to the jth cluster, is estimated for each pair of
data and clusters. Then all the parameters related with the
calculation of cluster centers in a feature space F are
updated in the M-step.

2’ zhjl :1 (V]), (8)

=1

Dataset
We applied our method to the yeast Saccharomyces
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Fig. 2. The six inherent patterns for the yeast cell cycle data, extracted by an aspect model with K=6. Each pattern is characterized by its
conditional distribution P(a, |2}/ Pa, |z, Among the 73 conditions, patterns over 18 time points from « factor-based synchronization
are shown. For a clear presentation, patterns were reordered in ascending order according to their first time point of the peak expression,
and probability values were rescaled. The peak time indices are (2, 11), (2, 11), (4, 12), (5, 13), (7, 15), and (9, 17), from pattern 1 to

pattern 6.

cerevisiae cell cycle data (Spellman et al., 1998). This
dataset (available at http://cellcycle-www.stanford.edu)
contains the time series of relative expression
measurements of more than 6,000 genes from cell cultures
synchronized by three independent methods. In the first
set, the @ mating factor pheromone was used to arrest cells
in G1 and samples were taken in every 7 minutes
throughout 140 minutes. In the second set, centrifugal
elutriation was used to collect small G1 cells in every 30
minutes during 6.5 hours. In the third, cde15 temperature-
sensitive mutant was used to arrest cells in late mitosis and
samples were taken in every 10 minutes during 300
minutes. Additionally, samples from arrest of a cdc28
temperature-sensitive mutant (Cho et al., 1998) were
included in the dataset. The analysis of these data sets
enables researchers to identify cycles or waves of
expressions that are meaningful in biclogical processes.
Spellman and his colleagues {Speliman, 1998) have
identified 800 genes whose expressions are cell cycle-
regulated using their periodicity and correlation analysis
methods. Among the 800 yeast genes, we selected 700
genes with at most 4 missing entries over 73 conditions: 18
time points over « arrest, 24 over cdc15 arrest, 17 over
cdc28 arrest, and 14 over elutriation. For each gene, the
missing values were filled by the average values of the
either side of the time points, assuming the smooth
variation of gene expression levels during the cell cycle.
Finally, the dataset is represented by a 73 X700 matrix
where each gene is represented by a column vector

containing 73 attributes of gene expression levels.

Results

initially, we applied the aspect model to extract latent
patterns inherent in the gene expression variation during
the progress of cell cycle. In the aspect model, observed
values are assumed to be count-valued. Prior to the
analysis, therefore, all the expression values v; (1< i<
700, 1< j< 73) were first transformed to positive integer
values by r(a;, a)) = [100 X (1/(1+exp(-v)))]'.

The yeast cell cycle data was analyzed with varying
number of latent factors z={z, z, -+, z¢}, from k=5 to K=10.
The result with k=6 is shown in Fig. 2, where the
expression patterns are plotted across the 18 time points
from the e-factor experiments. It can be seen that different
periodicities of gene expression are captured in the six
patterns. Compared with the cell cycle phase described in
(Spellman et al., 1998), these patterns relatively well reflect
peak expression behaviors in respective cell cycle phases:
M/G1-phase (patterns 1 and 2), G1-phase (pattern 3),
G1/S-phase (pattern 4), S/G2-phase (pattern 5), and M-
phase (patiern 6).

Additionally, we clustered the 700 genes using the
learned aspect model in Fig. 2 and the STMK algorithm.

' By multiplying a constant 100, we actually consider to the
second decimal point of the values (in the range of 0 to 1)
obtained by 1/(1+exp{-v:)).
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Fig. 3. The STMK clustering map of genes from yeast cell cycle data. 700 genes with less than or equal to 4 missing values, among
Spellman’s 800 putative cell cycle-regulated genes, were clustered into 36 (6 x 6) groups. Expression levels (y-axis) over the 18 time
points (x-axis) from the experiment of a-factor synchronization are shown. In each cluster, the solid line is the mean expression values of
the genes in the cluster and the dotted line is the standard deviation in expression levels of those.

The kernel function in Equation (4) was used to calculate
similarities between two genes. Fig. 3 shows the resulting
cluster map with 36 clusters on the 6 x 6 grid. Each cluster
is represented by the average expression pattemn of genes
in the cluster. Different periodicities in gene expression are
shown across the clusters on the grid and the adjacent
clusters have similar patterns.

Cluster structure is also presented in terms of latent
pattems (Fig. 4). A gene x is mapped into the latent space
produced by the aspect model and is represented by a vector
of probabilities, ¥:=®@1x)PGEx) -~ Pl lx). X, P ix)=1
Then cluster centers C: (1< k <36) in the latent space are
expressed as linear combinations of y: by

36
00 th,P(x,. € clusterl)
€ = Zaikyi’ @ = 5 36 >
=l Zth,P(xj € clusterl)

j=11=1

where ax is the contribution of the ith sample to the cluster £.

The genes in a cluster are now distinguished from those
in other clusters by the combination characteristics of the
latent patterns. The cluster 1 of the top-left-most, for
example, shows the highest probabilities in the pattem 3.

The third pattern in Fig. 2 characterizes genes of which the
first peaks of their expression are observed at the
measurement points around 21 minutes from the start of
the a-factor experiments. This is a typical expression
behavior of the genes in the G1 phase group identified in
(Spellman et al., 1998), and all 45 genes (CDC45, CLB5,
MSH2, MSHS, etc) in the cluster 1 are found in the G1
phase group. Nearby clusters of cluster 1 in Fig. 4 shows
the similar combination patterns, and most of the genes in
those clusters are found in the G1 phase group. Similar
analysis is possible for clusters 6, 31, 36: patterns 4 and 5
are dominant in cluster 6, patterns 1 and 2 in cluster 31,
and pattern 6 in cluster 36. Genes in those clusters are
found in the phase groups of which typical expression
characteristics are similar to the dominant patterns. 35
genes (HHF1, HTA1, HTA2, HTB2, efc) among 39 in the
cluster 6, 21 (ACE2, CLB1, CLB2, MOB1, efc) genes
among 24 in cluster 31, and all 35 genes (ASH1, CDC46,
MFA2, SIC1, etc) in cluster 36 belong to S phase group,
M/G1 phase group, and G2/M phase group, respectively.
The constitution of all the clusters in terms of phase groups
identified by Spellman et al. are described in Table 1.

A closer examination of Fig. 4 provides another
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Table 1. The assignment table of 700 genes to 36 clusters. Cluster enumeration is the same as those in Figures 3 and 4. In each
cluster, genes assigned to the cluster are divided according to their phase group specified by Spellman et al. Note that these
classification of genes in a cluster are not rigid, since the classification at the boundary between two phases are rather ambiguous
(Speliman et al., 1998). For example, six of the eight genes (PSA1, CBF2, YLLO12W, YBLOO9W, SVL3, KAR3, SPC98, SRL1} in

cluster 5, classified as being peak-expressed in G1 phase, are actually among the first 14 genes from the boundary of G1 and S
phase.
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Fig. 4. The STMK clustering map with representation according to the composition of latent patterns. When each gene x: is represented in
the latent space by y={P(zIx),--, P(zIx)} based on six patterns (x-axis) in Figure 2, each cluster shows the average responsibilities (y-
axis) of the latent patterns for expression behaviors of genes in the cluster.

interesting interpretation. When we go from cluster 1 to
cluster 6 along the top margin, for example, we can see
that pattemn 3 declines steadily and pattern 5 rises instead.
This shows the distinction among genes in different
clusters in terms of the peak time in their expression,

where the first peak time of the genes with higher
probabilities of pattern 3 is earlier than that of the genes
with the opposite combination. Referred to the G1 phase
group ordered by their peak times (Speliman, 1998), genes
in cluster 1 and cluster 2 are found in the earlier part than
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those in cluster 3 and 4. Most of the genes in cluster 5 are
located in the boundary of G1 phase group and S phase
group, and most of those in cluster 6 are found in the S
phase group. Similar tendencies are observed in
subsequent routes: from cluster 6 to cluster 36 along the
right margin, from cluster 36 to cluster 31 along the bottom
margin (Table 1). In this way, a proper discovery and
exploitation of the inherent structures in gene expression
behaviors helps us for further understanding of expression
time-series data.

Conclusions

We have presented an effective approach for gene
expression pattern analysis, based on latent variable
models and topographic clustering. Applied to the
expression analysis of the cell cycle-regulated genes of the
yeast Saccharomyces cerevisiae, various distinctive
patterns underlying the data set were extracted by an
efficient latent variable model, that is, the aspect model.
The identified patterns well correspond to the typical
expression behaviors of genes regulated in specific cell
cycle phases. In topographical ciustering, based on the
STMK algorithm and a similarity measure derived from the
aspect model, the discovered gene clusters are well
reflecting their characteristic expression patterns during the
progress of cell cycle.

In addition, our apprach has provided two informative
maps on the cluster structure. The first map depicts each
cluster by the expression variation of genes in the cluster,
across the measured time points. In the second map, the
clusters are depicted by the combination patterns of /atent
properties inherent in the data. A meta-level analysis and
visualization based on these coupled maps enables a
more principled interpretation of gene expression patterns.

As future works, we are considering to incorporate
another type of information for gene expression data
analysis. The learning in latent variable models is basically
unsupervised. In some cases, however, existing labeled
data can be used during training to improve performance.
For the yeast data, for example, more than 100 genes
have been already identified as being cell cycle-regulated.
Hierarchical latent variable models and semi-supervised
learning in the model could be applied to utilizing this
information. Additionally, we will study on the selection of
appropriate number of latent factors of aspect models in
the analysis of gene expression data. In probabilistic
generative models like aspect models, this problem can be
reduced to a model selection probiem. Then, standard
techniques from statistics, based on various criteria such
as BIC and MDL, could be used in our works.
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