Browse > Article

Gene Expression Pattern Analysis via Latent Variable Models Coupled with Topographic Clustering  

Chang, Jeong-Ho (Biointelligence Laboratory, School of Computer Science and Engineering, Seoul National University)
Chi, Sung Wook (Biointelligence Laboratory, School of Computer Science and Engineering, Seoul National University)
Zhang, Byoung Tak (Biointelligence Laboratory, School of Computer Science and Engineering, Seoul National University)
Abstract
We present a latent variable model-based approach to the analysis of gene expression patterns, coupled with topographic clustering. Aspect model, a latent variable model for dyadic data, is applied to extract latent patterns underlying complex variations of gene expression levels. Then a topographic clustering is performed to find coherent groups of genes, based on the extracted latent patterns as well as individual gene expression behaviors. Applied to cell cycle­regulated genes of the yeast Saccharomyces cerevisiae, the proposed method could discover biologically meaningful patterns related with characteristic expression behavior in particular cell cycle phases. In addition, the display of the variation in the composition of these latent patterns on the cluster map provided more facilitated interpretation of the resulting cluster structure. From this, we argue that latent variable models, coupled with topographic clustering, are a promising tool for explorative analysis of gene expression data.
Keywords
gene expression pattern; latent variable model; Fisher kernel; topographic clustering;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Baldi, P. and Hatfield, G.W. (2002). DNA Microarrays and Gene Expression: From Experiments to Data Analysis and Modelings. (Cambrige, UK, Cambridge University Press)
2 Cho, R.J. et al. (1998). A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell 2, 65-73   DOI   ScienceOn
3 Dempster, A.P., Laird, N.M., and Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society B 39, 1-38
4 Eisen, M.B., Spellman, P.T., Brown, P.O., and Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863-14868   DOI   ScienceOn
5 Herwig, R., Poutska, A. J., Muller, C., Bull, C., Lehrach, H., and O' Brien, J. (1999). Large-scale clustering of cDNA-fingerprinting data. Genome Research 9, 1093-1105   DOI   ScienceOn
6 Jaakkola, T. and Haussler, D. (1999). Exploiting generative models in discriminative classifiers. In Advances in Neural Information Processing Systems 11, 487-493
7 Graepel, T., Burger, M., and Obermayer, K. (1998). Self-organizing maps: Generalizations and new optimization techniques. Neurocomputing 21, 173-190   DOI   ScienceOn
8 Scholkopf, B. and Sm Nola, A.J. (2001). Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. (Cambridge, MA: MIT Press)
9 Shamir, R. and Sharan, R. (2002). Algorithmic approaches to clustering gene expression data. In Jiang, T., Smith, T., Xu, Y., and Zhang, M., edso, Current Topics in Computational Biology, Jiang, T., Smith, T., Xu, Y., and Ahang, M., (Cambridge, MA: MIT Press), pp 269-299
10 Bishop, C.M. (1999). Latent variable models. In Learning in Graphical Models, Jordan, M.I.,ed. (Cambrige; The MIT Press), pp.371-403
11 Tavazoie, S., Hughes, J.D., Campbell, M.J., Cho, R.J., and Church, G.M. (1999). Systematic determination of genetic network architecture. Nature Genetics 22, 281-285   DOI   ScienceOn
12 Fowlkes, C., Shan, Q., Belongie, S., and Malik, J. (2002). Extracting global structure from gene expression profiles. In edso, Methods of Microarray Data Analysis II: Papers from CAMDA 01. Lin, S.M. and Johnson, K.F., (Norwell, MA: Kluwer Academic Publishers), pp. 81-90
13 Tsuda, K., Kin, T., and Asai, K. (2002). Marginalized kernels for biological sequences. Bioinformatics 18(SuppI1), S268-S275   DOI
14 Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S. Dmitrovsky, E., Lander, E. S., and Golub, T. R. (1999). Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc. Natl. Acad. Sci. USA 96, 2907-2912   DOI   ScienceOn
15 Scherf, U. et al. (2000). A gene expression database for the molecular pharmacology of cancer. Nature Genetics 24, 236-244   DOI   ScienceOn
16 Toronen, P., Kolehmainen, M., Wong, G., and Castren, E. (1999). Analysis of gene expression data using self-organizing maps. FEBS Letters 451(2), 142-146   DOI   ScienceOn
17 Spellman, P.T. et al. (1998). Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. BioI. Cell 9, 3273-3297   DOI
18 Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and Other Kernel-based Learning Methods (Cambridge; Cambridge University Press)
19 Hofmann, T. (2001). Unsupervised learning by probabilistic latent semantic analysis. Machine Learning 42, 177-196   DOI   ScienceOn
20 Rose, K., Gurewitz, E., and Fox, G. (1990). A deterministic annealing approach to clustering. Pattern Recognition Letters 11, 589-594   DOI   ScienceOn
21 Hofmann, T. (2000). Learning the similarity of documents: an information-geometric approach to document retrieval and categorization. In Advances in Neural Information Processing Systems 12, 914-920
22 Kohonen. T. (1997). Self-Organizing Maps (New York: Springer-Verlag)