• Title/Summary/Keyword: Vapor quality

Search Result 595, Processing Time 0.035 seconds

High Quality Non-Transfer Single-Layer Graphene Process Grown Directly on Ti(10 nm)-Buffered Layer for Photo Lithography Process (포토 리소그래피 공정을 위한 Ti(10 nm)-Buffered층 위에 직접 성장된 고품질 무전사 단층 그래핀 공정)

  • Oh, Keo-Ryong;Han, Yire;Eom, Ji-Ho;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.1
    • /
    • pp.21-26
    • /
    • 2021
  • Single-layer graphene is grown directly on Ti-buffered SiO2 at 100℃. As a result of the AFM measurement of the Ti buffer layer, the roughness of approximately 0.2 nm has been improved. Moreover, the Raman measurement of graphene grown on it shows that the D/G intensity ratio is extremely small, approximately 0.01, and there are no defects. In addition, the 2D/G intensity ratio had a value of approximately 2.1 for single-layer graphene. The sheet resistance is also 89 Ω/□, demonstrating excellent characteristics. The problem was solved by using graphene and a lift-off patterning method. Low-temperature direct-grown graphene does not deteriorate after the patterning process and can be used for device and micro-patterning research.

Synthesis and Characterization of Bandgap-modulated Organic Lead Halide Single Crystals

  • Park, Dae Young;Byun, Hye Ryung;Lee, A Young;Choi, Ho Min;Lim, Seong Chu;Jeong, Mun Seok
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1716-1724
    • /
    • 2018
  • Single crystal of organic lead halide ($CH_3NH_3PbX_3$; $CH_3NH^+_3$ = methylammonium (MA), $X=Cl^-$, $Br^-$, $I^-$) is the best candidate for material intrinsic property studies due to no grain boundary and high crystal quality than the film having a lot of grain boundary and surface defects. The representative crystallization methods are inverse temperature crystallization (ITC) and anti-solvent vapor assisted crystallization (AVC). Herein, we report bandgap modulated organic lead halide single crystals having a bandgap ranging from ~ 2.1 eV to ~ 3 eV with ITC and AVC methods. The bandgap modulation was achieved by controlling the solvents and chloride-to-bromide ratio. Structural, optical and compositional properties of prepared crystals were characterized. The results show that the crystals synthesized by the two crystallization methods have similar properties, but the halide ratios in the crystals synthesized by the AVC method are controlled more quantitatively than the crystals synthesized by ITC.

Thermal Radiative Properties of Multilayer Graphene/Glass Structure (다층 그래핀/유리 구조체의 적외선 열복사 특성 연구)

  • Park, Kyung-Ah;Lim, Mikyung;Jung, Hyun-June;Kim, Jae-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.1
    • /
    • pp.27-32
    • /
    • 2021
  • In this study, we fabricated multilayer graphene on a glass substrate by stacking the monolayer graphene synthesized via chemical vapor deposition. The electrical sheet resistance and optical transmittance were evaluated to confirm the quality of the stacked multilayer graphene. Using the fabricated multilayer graphene/glass structure, we characterized its thermal radiative property in terms of the integrated emissivity. The integrated emissivity of the multilayer graphene/glass structure was tuned from 0.91 to 0.72 when the number of graphene layers was changed from 1 to 12. We also demonstrated that the emissivity tunability provided a way to control the apparent temperature of an object that can be used in infrared stealth applications.

Abnormal Detection in 3D-NAND Dielectrics Deposition Equipment Using Photo Diagnostic Sensor

  • Kang, Dae Won;Baek, Jae Keun;Hong, Sang Jeen
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.74-84
    • /
    • 2022
  • As the semiconductor industry develops, the difficulty of newly required process technology becomes difficult, and the importance of production yield and product reliability increases. As an effort to minimize yield loss in the manufacturing process, interests in the process defect process for facility diagnosis and defect identification are continuously increasing. This research observed the plasma condition changes in the multi oxide/nitride layer deposition (MOLD) process, which is one of the 3D-NAND manufacturing processes through optical emission spectroscopy (OES) and monitored the result of whether the change in plasma characteristics generated in repeated deposition of oxide film and nitride film could directly affect the film. Based on these results, it was confirmed that if a change over a certain period occurs, a change in the plasma characteristics was detected. The change may affect the quality of oxide film, such as the film thickness as well as the interfacial surface roughness when the oxide and nitride thin film deposited by plasma enhenced chemical vapor deposition (PECVD) method.

Characterization of GaN on GaN LED by HVPE method

  • Jung, Se-Gyo;Jeon, Hunsoo;Lee, Gang Seok;Bae, Seon Min;Kim, Kyoung Hwa;Yi, Sam Nyung;Yang, Min;Ahn, Hyung Soo;Yu, Young Moon;Kim, Suck-Whan;Cheon, Seong Hak;Ha, Hong Ju;Sawaki, Nobuhiko
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc1
    • /
    • pp.128-131
    • /
    • 2012
  • The selective area growth light emitting diode on GaN substrate was grown using mixed-source HVPE method with multi-sliding boat system. The GaN substrate was grown using mixed-source HVPE system. Te-doped AlGaN/AlGaN/Mg-doped AlGaN/Mg-doped GaN multi-layers were grown on the GaN substrate. The appearance of epi-layers and the thickness of the DH was evaluated by SEM measurement. The DH metallization was performed by e-beam evaporator. n-type metal and p-type metal were evaporated Ti/Al and Ni/Au, respectively. At the I-V measurement, the turn-on voltage is 3 V and the differential resistance is 13 Ω. It was found that the SAG-LED grown on GaN substrate using mixed-source HVPE method with multi-sliding boat system could be applied for developing high quality LEDs.

Effect of Chemical Vapor Deposition Condition on the Growth of SiC Thin Films (화학기상증착조건이 SiC 박막의 성장에 미치는 영향)

  • Bang, Wook;Kim, Hyeong-Joon
    • Korean Journal of Crystallography
    • /
    • v.3 no.2
    • /
    • pp.98-110
    • /
    • 1992
  • B-SiC thin films were fabricated on Si(100) substrate under 1 atom by fVD. The effects of deposition conditions on the growth and the properties especially crystallinity and prefer ential alignment of these thin films were investigated. SiH4 and CH4 were used as source gases and H2 as Carrier gas. Th9 growth Of B-SiC thin films with changing parameters such as the growth temperature, the ratio of source gases (SiH4/CH4 ) and the total amount of source gases. The grown thin films were characterized by using SEM, a -step, XRD, Raman Spectro- scopy and TEM. Chemical conversion process improved the quality of thin films due to the formation of SiC buffer layer. The crystallinity of SiC thin films was improved when the growth temperature was higher than l150t and the amount of CH4 exceeded that of SiH4. The better crystallinity, the better alignment to the crystalline direction of substates. TEM analyses of the good quality thin films showed that the grain size was bigger at the surface than at the interface and the defect density is not depend on the ratio of the source gases.

  • PDF

Diameter Expansion of 6H-SiC Single Crystals by the Modification of Crucible Structure Design (도가니 구조 변경을 통한 6H-SiC 단결정의 직경 확장에 관한 연구)

  • Kim, Jung-Gyu;Kyun, Myung-Ok;Seo, Jung-Doo;An, Joon-Ho;Kim, Jung-Gon;Ku, Kap-Ryeol;Lee, Won-Jae;Kim, Il-Soo;Shin, Byoung-Chul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.673-679
    • /
    • 2006
  • A sublimation method using the SiC seed crystal and SiC powder as the source material is commonly adopted to grow SiC bulk single crystal. However, it has proved to be difficult to achieve the high quality crystal and the process reliability because SiC single crystal should be grown at very high temperature in closed system. In this study, SiC crystal boules were prepared with different angles in trapezoid-shaped graphite seed holders using sublimation physical vapor transport technique (PVT) and then their crystal quality was systematically investigated. The temperature distribution in the growth system and the crystal shape were varied with angles in trapezoid-shaped graphite seed holders, which was successfully simulated using 'Virtual Reactor'. The SiC polytype proved to be the n-type 6H-SiC from the typical absorption spectrum of SiC crystal. The micropipe densities of SiC wafers in this study were measured to be < $100/cm^2$. Consequently, SiC single crystal with large diameter was successfully achieved with changing angle in trapezoid-shaped graphite seed holders.

Effect of the Thickness and the Annealing Conditions of the Catalytic Ni Films on the Graphene Films Grown by a Rapid-Thermal Pulse CVD (Rapid-Thermal Pulse 화학증착법에 의해 증착된 그래핀 박막에서 촉매금속 Ni의 두께 및 열처리 조건의 영향)

  • Na, Sin-Hye;Yoon, Soon-Gil
    • Korean Journal of Materials Research
    • /
    • v.21 no.2
    • /
    • pp.78-82
    • /
    • 2011
  • Mono- and few-layer graphenes were grown on Ni thin films by rapid-thermal pulse chemical vapor deposition technique. In the growth steps, the exposure step for 60 s in $H_2$ (a flow rate of 10 sccm (standard cubic centimeters per minute)) atmosphere after graphene growth was specially established to improve the quality of the graphenes. The graphene films grown by exposure alone without $H_2$ showed an intensity ratio of $I_G/I_{2D}$ = 0.47, compared with a value of 0.38 in the films grown by exposure in H2 ambient. The quality of the graphenes can be improved by exposure for 60 s in $H_2$ ambient after the growth of the graphene films. The physical properties of the graphene films were investigated for the graphene films grown on various Ni film thicknesses and on 260-nm thick Ni films annealed at 500 and $700^{\circ}C$. The graphene films grown on 260-nm thick Ni films at $900^{\circ}C$ showed the lowest $I_G/I_{2D}$ ratio, resulting in the fewest layers. The graphene films grown on Ni films annealed at $700^{\circ}C$ for 2 h showed a decrease of the number of layers. The graphene films were dependent on the thickness and the grain size of the Ni films.

A Study on Properties of $MgF_2$ antireflection film for solar cell (태양전지용 $MgF_2$ 반사방지막 특성연구)

  • Yang, Hyeon-Hun;Baek, Su-Ung;Na, Kil-Ju;So, Soon-Youl;Park, Gye-Choon;Lee, Jin;Chung, Hae-Deok
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1272_1274
    • /
    • 2009
  • $MgF_2$ is a current material for the optical applications in the UV and deep UV range. Process variables for manufacturing the $MgF_2$ thin film were established in order to clarify optimum conditions for growth of the thin film depending upon process conditions, and then by changing a number of vapor deposition conditions and substrate temperature, Annealing conditions variously, structural and Optical characteristics were measured. Thereby, optimum process variables were derived. Nevertheless, modern applications still require improvement of the optical and structural quality of the deposited layers. In the present work, the composition and microstructure of $MgF_2$ single layers grown on slide glass substrate by Electro beam Evaporator(KV-660) processes, were analyzed and compared. The surface Substrate temperature having an effect on the quality of the thin film was changed from 200[$^{\circ}C$] to 350[$^{\circ}C$] at intervals of 50[$^{\circ}C$]. and annealing temperature an effect on the thin film was changed from 200[$^{\circ}C$] to 400[$^{\circ}C$] at intervals of 50[$^{\circ}C$]. Physical properties of the thin film were investigated at various fabrication conditions substrate temperature, annealing and temperature, annealing time by XRD, FE-SEM.

  • PDF

Swift Synthesis of CVD-graphene Utilizing Conduction Heat Transfer

  • Kim, Sang-Min;Mag-isa, Alexander E.;Oh, Chung-Seog;Kim, Kwang-Seop;Kim, Jae-Hyun;Lee, Hak-Joo;Yoon, Jonghyuk;Lee, Eun-Kyu;Lee, Seung-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.652-652
    • /
    • 2013
  • The conventional thermal chemical vapor deposition (CVD) setup for the graphene synthesis has mainly used convective heat transfer in order to heat a catalyst (e.g. Cu) up to $1,000^{\circ}C$. Although the conventional CVD has been so far widely accepted as the most appropriate candidate enabling mass-production of high-quality graphene, this method has stillremained under the standard for the commercialization largely due to the poor productivity arisen out of the required long processing time. Here, we introduced a fast and efficient synthetic route toward CVD-graphene. Unlike the conventional CVD using convection heat transfer, we adopted a CVD setup utilizing conduction heat transfer between Cu catalyst and rapid heating source. The high thermal conductive nature of Cu and the employed rapid heating source led to the remarkable reduction in processing timeas compared to the conventional convection based CVD (Fig. 1A), moreover, the synthesized graphene was turned out to have comparable quality to that synthesized by the conventional CVD (Fig. 1B). For the optimization of the conduction based CVD process, the parametric studies were thoroughly performed using through Raman spectroscopy and electrical sheet resistance measurement. Our approach is thought to be worth considerable in order to enhance productivity of the CVD graphene in the industry.

  • PDF