• Title/Summary/Keyword: Vapor flow

Search Result 973, Processing Time 0.027 seconds

HVPE growth of GaN/InGaN heterostructure on r-plane sapphire substrate (R-plane 사파이어 기판위의 GaN/InGaN 이종접합구조의 HVPE 성장)

  • Jeon, H.S.;Hwang, S.L.;Kim, K.H.;Jang, K.S.;Lee, C.H.;Yang, M.;Ahn, H.S.;Kim, S.W.;Jang, S.H.;Lee, S.M.;Park, G.H.;Koike, M.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.1
    • /
    • pp.6-10
    • /
    • 2007
  • The a-plane GaN layer on r-plane $Al_2O_3$ substrate is grown by mixed-source hydride vapor phase epitaxy (HVPE). The GaN/InGaN heterostructure is performed by selective area growth (SAG) method. The heterostructure consists of a flown over mixed-sourec are used as gallium (or indium) and nitrogen sources. The gas flow rates of HCl and $NH_3$ are maintained at 10 sccm and 500 sccm, respectively. The temperatures of GaN source zone is $650^{\circ}C$. In case of InGaN, the temperature of source zone is $900^{\circ}C$. The grown temperatures of GaN and InGaN layer are $820^{\circ}C\;and\;850^{\circ}C$, respectively. The EL (electroluminescence) peak of GaN/InGaN heterostructure is at nearly 460 nm and the FWHM (full width at half maximum) is 0.67 eV. These results are demonstrated that the heterostructure of III-nitrides on r-plane sapphire can be successfully grown by mixed-source HVPE with multi-sliding boat system.

Effect of Reaction Temperature on the Geometry of Carbon Coils Formed by SF6 Flow Incorporation in C2H2 and H2 Source Gases (SF6-C2H2-H2 기체에 의해 생성된 탄소 코일 기하구조의 반응온도 효과)

  • Kim, Sung-Hoon
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.48-54
    • /
    • 2012
  • Carbon coils could be synthesized on nickel catalyst layer-deposited silicon oxide substrate using $C_2H_2$ and $H_2$ as source gases and SF6 as an additive gas under thermal chemical vapor deposition system. The geometries of as-grown carbon materials were investigated with increasing the reaction temperature as the increment of $25^{\circ}C$ from $650^{\circ}C$ up to $800^{\circ}C$. At $650^{\circ}C$, the embryos for carbon coils were formed. With increasing the reaction temperature to $700^{\circ}C$, the coil-type geometries were developed. Further increasing the reaction temperature to $775^{\circ}C$, the development of wave-like nano-sized coils, instead of nano-sized coils, and occasional appearance of micro-sized carbon coils could be observed. Fluorine in $SF_6$ additive may shrink the micro-sized coil diameter via the reduction of Ni catalyst size by fluorine's etching role. Finally, the preparation of the micro-sized carbon coils having the smaller coil diameters, compared with the previously reported ones, could be possible using $SF_6$ additive.

The Effect of Diluent Gases on the Growth Behavior of CVD SiC (희석기체가 화학증착 탄화규소의 성장거동에 미치는 영향)

  • 최두진;김한수
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.2
    • /
    • pp.131-138
    • /
    • 1997
  • Silicon carbide films were chemically vapor deposited onto graphite substrates using MTS(Ch3SiCl3) as a source and Ar or H2 as a diluent gas. The experiments were performed at a fixed condition such as a de-position temperature of 130$0^{\circ}C$, a total pressure of 10 torr, and a flow rate of 100 sccm for each MTS and carrier gas. The purpose of this study is to consider the variation of the growth behavior with the addition of each diluent gas. It is shown that the deposition rate leads to maximum value at 200 sccm addition ir-respective of diluent gases and the deposition rate of Ar addition is faster than that of H2 one. It seems that these characteristics of deposition rate are due to varying interrelationship between boundary layer thick-ness and the concentration of a source with each diluent gas addition, when overall deposition rate is con-trolled by mass transport kinetics. The preferred orientation of (220) plane was maintained for the whole range of Ar addition. However, above 200 sccm addition, especially that of (111) plane was more increased in proportion to H2 addition. Surface morphologies of SiC films were the facet structures under Ar addition, but those were gradually changed from facet to smooth structures with H2 addition. Surface roughness be-came higher in Ar, but it became lower in H2 with increasing the amount of diluent gas.

  • PDF

An Experimental Study on Performance of Vapor Compression Refrigeration Cycle with Al2O3 nano-particle (Al2O3 나노 입자를 적용한 증기 압축 냉동 사이클의 성능)

  • Kim, Jeongbae;Lee, Kyu-Sun;Lee, Geunan
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.124-129
    • /
    • 2015
  • An experimental study was performed estimating COP(Coefficient of Performance) of air-conditioning cycle using inverter scroll compressor with and without $Al_2O_3$ nano particle. All experiments were done for various compressor speeds from 1000~4000 rpm and used the inverter controller called CANDY to change the compressor rpm. The air-conditioning cycle components in the apparatus were used as same with components of YF hybrid car. To estimate the COP, this study measured the temperature and pressure at inlets and outlets of compressor, condenser, and evaporator. And also measured the compressor input power using Powermeter. Through the experiments, the maximum error to estimate COP was shown about ${\pm}6.09%$ at 3500rpm. The COP of refrigeration cycle with $Al_2O_3$ nano-particle was similar with that of the base cycle without nano-particle between 1000~3000 rpm of the compressor speed. But, This study showed that the COP of the cycle with $Al_2O_3$ over 3000 rpm of the compressor speed was higher than that of the base cycle due to the higher heat transfer rate increased in the evaporator from the higher oil flow rate inside the cycle as well known. Those results can be used the basic and fundamental data to design the air-conditioning cycle using inverter scroll compressor with $Al_2O_3$ nano particle.

Biofilter Model for Robust Biofilter Design: 1. Adsorption Behavior of the Media of Biofilter (강인한 바이오필터설계를 위한 바이오필터모델: 1. 바이오필터 담체의 흡착거동)

  • Lee, Eun Ju;Seo, Kyo Seong;Jeon, Wui-Sook;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.149-154
    • /
    • 2012
  • The adsorption and desorption behavior of biofilter-medium was investigated on the performance of an adsorption column. Continuous flow-isothermal adsorption experiments were performed to treat waste air containing such a VOC as ethanol under the same condition of > 90% relative humidity as the condition of the feed to a biofilter process. In case of feeding waste air containing ethanol of 1,000 ppmv (or 2,050 mg ethanol/$m^3$) to the adsorption system at the rate of 2 L/min, the onsets of its breakthrough and reaching the state of dynamic equilibrium at the exit had been delayed 10 and 3 times, respectively, later than those at the 1st stage sampling port. Moreover, in case of 2,000 ppmv (or 4,100 mg ethanol/$m^3$), they had been delayed 9 and 3 times, respectively. Thus, regardless of feeding concentration, the ratios of delaying period were observed to be quite consistent each other at the exit of the adsorption column. With regard to the period of desorption, the ratios of delaying period were consistent each other to be 1.5 for both cases. In addition, the effect of microbial activity and sterilization-process was studied on adsorption equilibrium. The ethanol concentration in the vapor phase of vials packed with sterilized granular activated carbon (GAC) was quite consistent to that with unsterilized GAC. However, the ethanol concentrations in the vapor phase of vials packed with unsterilized compost and the unsterilized mixture of GAC and compost were higher than those with sterilized compost and the sterilized mixture of GAC and compost, respectively.

A Study on CFD Analysis of Internal Flow for GaN Growth Reactor (CFD를 이용한 GaN 성장로 내부 유동해석 연구)

  • Jung, Eui-Man;Kwon, Hey-Lim;Choi, Joo-Ho;Jang, Seok-Pil;Jang, Hyun-Sool;Lee, Hae-Yong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.618-619
    • /
    • 2010
  • LED는 기존의 발광원에 비해 훨씬 높은 파워와 효율성으로 인해 최근 들어 각종 조명이나 교통신호 등에서 사용이 급증하고 있다. LED 재료를 위해 지금까지 여러가지가 연구되어 왔는데, 갈륨 질화물 (Gallium Nitride, GaN)에 기반한 시스템이 최근들어 가장 큰 관심을 받고 있다. GaN 방식은 열적으로 매우 안정성이 있고, 1.9 ~ 6.2 eV 범위의 넓은 밴드의 Gap, 그리고 인듐이나 알루미늄과 결합하여 청, 녹, 백색등의 다양한 빛을 발생할 수 있는 장점을 가지고 있다. 예를 들어 청색 LED는 광학 방식의 기록매체에, 백색 LED는 기존의 조명램프의 대체용으로 활용이 가능하다. 이러한 장점 덕분에 GaN기반 LED 시장은 1994년에 최초로 상용화 된 이래 최근 급격한 성장을 보여 왔다. 그러나 GaN은 다른 III~V 타입의 반도체 재료와는 달리 재료가 성장하기 위해 사파이어와 같은 별도의 기판을 필요로 하는 문제가 있다. 이것은 결국 전위발생과 같은 격자의 부조화 같은 문제를 야기하여 결국 LED의 성능을 떨어뜨리는 요인이 된다. 이러한 문제를 해결하기 위해 HVPE(Hydride Vapor Phase Epitaxy) 방법이 개발되었는데, 이 방법은 시간당 100 미크론의 매우 빠른 성장속도로 높은 두께의 레이어를 만드는 장점이 있다. 이렇게 성장된 GaN 레이어는 베이스 기판에서 쉽게 분리되어 활용이 가능하다. 그러나 HVPE 기술은 성장 공정에서 두께를 균일하게 만들도록 제어하는 것이 매우 어렵다는 문제가 있다. 따라서 HVPE 방식에서는 이러한 조건을 만족시키기 위해 반응현상에 대한 물리적 해석을 토대로 공정조건을 정밀하게 설계해야 한다. 이를 위해 최근에 실험 또는 시뮬레이션을 활용하여 이러한 공정조건을 향상시키기 위한 여러 연구가 진행되었다. 본 연구에서는 이러한 연구의 일환으로 반응로에 투입되는 여러 기체의 유량과 존별 주변온도 조건을 입력변수로 하고, 이들이 GaN 성장에 미치는 영향을 분석하였다. HVPE 시스템에서 가장 이상적인 목표는 반응기체가 층류유동을 유지하면서 대부분의 반응이 기판위에서 이뤄지며, 기판위에서 성장되는 재료의 두께가 균일하게 되는 것이다. 입력변수들이 이러한 결과에 어떠한 영향을 미치는 지 분석하기 위해 전산유체역학(CFD, Computational Fluid Dynamics)을 수행하는 상용코드 FLUENT를 사용하였다. 보다 실제에 가까운 해석을 위해서는 기체간의 화학반응을 포함해야 하나, 해석의 편의와 효율을 위해 본 연구에서는 열 및 유동해석만을 수행하였다. 한편 실제 반응로의 우수성은 성장속도와 두께분포의 균일도를 통해 평가된다. CFD 해석을 통해 이들을 분석하기 위해 기존에 수행한 실험조건을 해석하고 해석결과의 유동패턴/압력분포를 실험결과의 성장속도/두께분포와 비교하고, 이중에서 관련성이 높은 해석결과변수를 우수성 평가에 활용하였다. 기존의 실험결과를 토대로 이러한 중요 결과변수와 함께 이들에 대한 목표값이 도출되고 나면, 입력 공정조건 - 사용기체의 유량과 주변온도 조건 - 에 대해 실험계획(DOE,Design of Experiment)을 수립하고 목표성능을 구현하기 위한 최적설계를 수행할 수 있다. 일반적으로 CFD를 통해 최적의 설계나 공정조건을 탐색하는 작업은 1회의 CFD 계산시간이 매우 오래 소요되기 때문에 쉽지 않다. 그러나 본 연구에서는 CFD와 DOE의 적절한 조합을 통해 적은 수의 해석을 가지고도 원하는 결과를 효율적으로 얻는 것이 가능함을 입증하고자 한다. 본 발표에서는 아직 이러한 연구가 완성되지 않은 시점에서 제반 연구개요를 소개하고 현 시점까지의 연구 결과 및 향후 계획을 소개하고자 한다.

  • PDF

Study of Multi-stacked InAs Quantum Dot Infrared Photodetectors Grown by Metal Organic Chemical Vapor Deposition (유기금속화학기상증착법을 이용한 적층 InAs 양자점 적외선 수광소자 성장 및 특성 평가 연구)

  • Kim, Jung-Sub;Ha, Seung-Kyu;Yang, Chang-Jae;Lee, Jae-Yel;Park, Se-Hun;Choi, Won-Jun;Yoon, Eui-Joon
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.3
    • /
    • pp.217-223
    • /
    • 2010
  • We grew multi-stacked InAs/$In_{0.1}Ga_{0.9}As$ DWELL (dot-in-a-well) structure by metal organic chemical vapor deposition and investigated optical properties by photoluminescence and I-V characteristics by dark current measurement. When stacking InAs quantum dots (QDs) with same growth parameter, the size and density of QDs were changed, resulting in the bimodal emission peak. By decreasing the flow rate of TMIn, we achieved the uniform multi-stacked QD structure which had the single emission peak and high PL intensity. As the growth temperature of n-type GaAs top contact layer (TCL) is above $600^{\circ}C$, the PL intensity severely decreased and dark current level increased. At bias of 0.5 V, the activation energy for temperature dependence of dark current decreased from 106 meV to 48 meV with increasing the growth temperature of n-type GaAs TCL from 580 to $650^{\circ}C$. This suggest that the thermal escape of bounded electrons and non-radiative transition become dominant due to the thermal inter-diffusion at the interface between InAs QDs and $In_{0.1}Ga_{0.9}As$ well layer.

Deposition Characteristics of Lead Titanate Films on $RuO_2$ and Pt Substrates Fabricated by Chemical Vapor Deposition ($RuO_2$ 및 Pt 기판에서 $PbTiO_3$박막의 화학기상 증착특성에 관한 연구)

  • Jeong, Su-Ok;Lee, Won-Jong
    • Korean Journal of Materials Research
    • /
    • v.10 no.4
    • /
    • pp.282-289
    • /
    • 2000
  • $PbTiO_3$ films were fabricated by electron cyclotron resonance plasma enhanced chemical vapor deposition(ECR-PECVD). Deposition characteristics of $PbTiO_3$films on $RuO_2$ and Pt substrates were investigated with varying the flow rate of metalorganic source and substrate temperature. The residence time of Pb-oxide molecules in much longer on $RuO_2$ than on Pt substrate, while the perovskite nucleation is more difficult on $RuO_2$ than on Pt substrate. Therefore, the process conditions to obtain the single perovskite $PbTiO_3$ phase are more restricted on $RuO_2$ than on Pt substrates. An introduction of Ti-oxide seed layer increases perovskite nucleation density and thus enlarges the process window to obtain the single perovkite phase. The introduction of Ti-oxide seed layer make the PZT film that Ti-components of $PbTiO_3$ are partially substituted with Zr atoms have single perovskite phase for the wide range of Zr/(Zr+Ti) concentration ratios.

  • PDF

An Experimental Study on the Fundamental Characteristics of LPG Gas Injections System (LPG 가스분사시스템의 기초특성에 대한 실험적 연구)

  • Jang, Yeol-Sung;Woo, Sung-Dong;Kim, Hyeong-Sig;Park, Chan-Jun;Ohm, In-Yong
    • Journal of Energy Engineering
    • /
    • v.15 no.4 s.48
    • /
    • pp.277-283
    • /
    • 2006
  • In this study, butane 100% was used as fuel to verify the real fuel effect such as vapor pressure variation due to temperature change. A MPI fuel injection system for V-6 engine, which has reverse 'L' type cross section to minimize the possibility of liquid phase injection, was composed and one bank was operated under sequential injection scheme. Flow rate were measured according to injection duration, interval, and pressure. Also occurring of liquid phase injection was monitored with varying vaporizer and fuel rail temperature. The result shows that basic characteristics of injection is a relatively difference between air and LPG injection. Under cold start condition, however, the occurrence of liquid injection becomes more severe as the pressure increases, and sufficiently high temperature both in vaporizer and fuel rail is very important to insure gaseous injection. In addition, the temperature of vaporizer plays more important role in keeping LPG vapor state and the reverse 'L' type cross section of the rail is available to prevent liquid injection.

Metal-organic Chemical Vapor Deposition of Uniform Transition Metal Dichalcogenides Single Layers and Heterostructures (유기금속화학기상증착법을 이용한 전이금속 칼코게나이드 단일층 및 이종구조 성장)

  • Jang, Suhee;Shin, Jae Hyeok;Park, Won Il
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.119-125
    • /
    • 2020
  • Transition metal dichalcogenides (TMDCs), two-dimensional atomic layered materials with direct bandgap in the range of 1.1-2.1 eV, have attracted a lot of research interest due to their high response to light and capability to build new types of artificial heterostructures. However, the large-area synthesis of high-quality and uniform TMDC films with vertical-stacked heterostructure still remains challenge. In this study, we have developed a metal-organic chemical vapor deposition (MOCVD) system for TMDCs and conducted a systematic study on the growth of single-layer TMDCs and their heterostructures. In particular, using a bubbler-type organometallic compound sources, the concentration and flow rate of each source can be precisely controlled to obtain uniformly single-layered MoS2 and WS2 films over the centimeter scale. In addition, the MoS2/WS2 vertical heterostructure was achieved by growing WS2 film directly on the MoS2 film, as confirmed by electron microscopy, UV-visible spectrophotometer, Raman spectroscopy, and photoluminescence spectroscopy.