Browse > Article
http://dx.doi.org/10.6117/kmeps.2020.27.4.119

Metal-organic Chemical Vapor Deposition of Uniform Transition Metal Dichalcogenides Single Layers and Heterostructures  

Jang, Suhee (Division of Materials Science and Engineering, Hanyang University)
Shin, Jae Hyeok (Division of Materials Science and Engineering, Hanyang University)
Park, Won Il (Division of Materials Science and Engineering, Hanyang University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.27, no.4, 2020 , pp. 119-125 More about this Journal
Abstract
Transition metal dichalcogenides (TMDCs), two-dimensional atomic layered materials with direct bandgap in the range of 1.1-2.1 eV, have attracted a lot of research interest due to their high response to light and capability to build new types of artificial heterostructures. However, the large-area synthesis of high-quality and uniform TMDC films with vertical-stacked heterostructure still remains challenge. In this study, we have developed a metal-organic chemical vapor deposition (MOCVD) system for TMDCs and conducted a systematic study on the growth of single-layer TMDCs and their heterostructures. In particular, using a bubbler-type organometallic compound sources, the concentration and flow rate of each source can be precisely controlled to obtain uniformly single-layered MoS2 and WS2 films over the centimeter scale. In addition, the MoS2/WS2 vertical heterostructure was achieved by growing WS2 film directly on the MoS2 film, as confirmed by electron microscopy, UV-visible spectrophotometer, Raman spectroscopy, and photoluminescence spectroscopy.
Keywords
TMDC; MOCVD; Vertical heterostructure; $MoS_2$; $WS_2$; two-dimensional material;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 K. Kang, S. E. Xie, L. J. Huang, Y. M. Han, P. Y. Huang, K. F. Mak, C. J. Kim, D. Muller, and J. Park, "High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity", Nature, 520(7549), 656 (2015).   DOI
2 Y. C. Lin, R. K. Ghosh, R. Addou, N. Lu, S. M. Eichfeld, H. Zhu, M. Y. Li, X. Peng, M. J. Kim, L. J. Li, R. M. Wallace, S. Datta, and J. A. Robinson, "Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures", Nat. Commun., 6(1), 1 (2015).
3 M. Marx, A. Grundmann, Y. R. Lin, D. Andrzejewski, T. Kummell, G. Bacher, M. Heuken, H. Kalisch, and A. Vescan, "Metalorganic Vapor-Phase Epitaxy Growth Parameters for Two-Dimensional MoS2", J. Electron. Mater., 47(2), 910 (2018).   DOI
4 J. J. Pyeon, S. H. Kim, D. S. Jeong, S. H. Baek, C. Y. Kang, J. S. Kim, and S. K. Kim, "Wafer-scale growth of MoS2 thin films by atomic layer deposition", Nanoscale, 8(20), 10792 (2016).   DOI
5 L. K. Tan, B. Liu, J. H. Teng, S. F. Guo, H. Y. Low, H. R. Tan, C. Y. T. Chong, R. B. Yang, and K. P. Loh, "Atomic layer deposition of a MoS2 film", Nanoscale, 6(18), 10584 (2014).   DOI
6 S. Yeo, D. K. Nandi, R. Rahul, T. H. Kim, B. Shong, Y. Jang, J. S. Bae, J. W. Han, S. H. Kim, and H. Kim, "Low-temperature direct synthesis of high quality WS2 thin films by plasma-enhanced atomic layer deposition for energy related applications", Appl. Surf. Sci., 459, 596 (2018).   DOI
7 H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, "From Bulk to Monolayer MoS2: Evolution of Raman Scattering", Adv. Funct. Mater., 22(7), 1385 (2012).   DOI
8 A. G. Bagnall, W. Y. Liang, E. A. Marseglia, and B. Welber, "Raman Studies of Mos2 at High-Pressure", Physica B+C, 99, 343 (1980).   DOI
9 A. Berkdemir, H. R. Gutierrez, A. R. Botello-Mendez, N. Perea-Lopez, A. L. Elias, C. I. Chia, B. Wang, V. H. Crespi, F. Lopez-Urias, J. C. Charlier, H. Terrones, and M. Terrones, "Identification of individual and few layers of WS2 using Raman Spectroscopy", Scientific reports, 3(1), 8 (2013).
10 S. H. Kim, J. Jiang, S. Jang, J. H. Lee, D. W. Yang, W. J. Chang, J. H. Shin, N. Oh, J. Kim, R. Pachter, and W. I. Park, "Fast synthesis of large-scale single-crystal graphene with well-defined edges upon sodium chloride addition", Carbon, 158, 904 (2020).   DOI
11 J. H. Lee, J. H. Shin, S. I. Lee, and W. I. Park, "Review on electric-field transparent conduct electrodes based on nanomaterials", J. Microelectron. Packag. Soc., 27(1), 9 (2020).
12 S. H. Kim, J. H. Lee, J. S. Park, M. S. Hwang, H. G. Park, K. J. Choi, and W. I. Park, "Performance optimization in gatetunable Schottky junction solar cells with a light transparent and electric-field permeable graphene mesh on n-Si", Journal of Materials Chemistry C, 5, 3183 (2017).   DOI
13 J. H. Shin, S. H. Kim, S. S. Kwon, and W. I. Park, "Direct CVD growth of graphene on three-dimensionally-shaped dielectric substrates", Carbon, 129, 785 (2018).   DOI
14 S. W. Bang, H. K. Rho, H. J. Bae, S. J. Kang, and J. S. Ha, "Improvement of electrochemical reduction characteristics of carbon dioxide at porous copper electrode using graphene", J. Microelectron. Packag. Soc., 25(4), 105 (2018).   DOI
15 J. Kang, S. Tongay, J. Zhou, J. B. Li, and J. Q. Wu, "Band offsets and heterostructures of two-dimensional semiconductors", Appl. Phys. Lett., 102(1), 012111 (2013).   DOI
16 R. Kumar, S. Sahoo, E. Joanni, R. K. Singh, R. M. Yadav, R. K. Verma, D. P. Singh, W. K. Tan, A. P. del Pino, S. A. Moshkalev, and A. Matsuda, "A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: Recent progress and perspectives", Nano Research, 12, 2655 (2019).   DOI
17 J. Li, Y. L. Zhong, and D. Zhang, "Excitons in monolayer transition metal dichalcogenides", Journal of Physics: Condensed Matter, 27(31), 315301 (2015).   DOI
18 M. M. Luo, T. J. Fan, Y. Zhou, H. Zhang, and L. Mei, "2D Black Phosphorus-Based Biomedical Applications", Advanced Functional Materials, 29(13), 1808306 (2019).   DOI
19 J. L. Zhao, J. J. Zhu, R. Cao, H. D. Wang, Z. N. Guo, D. K. Sang, J. N. Tang, D. Y. Fan, J. Q. Li, and H. Zhang, "Liquefaction of water on the surface of anisotropic two-dimensional atomic layered black phosphorus", Nature communications, 10(1), 1 (2019).   DOI
20 M. J. Cui, S. M. Ren, J. Chen, S. Liu, G. G. Zhang, H. C. Zhao, L. P. Wang & Q. J. Xue, "Anticorrosive performance of waterborne epoxy coatings containing water-dispersible hexagonal boron nitride (h-BN) nanosheets", Appl Surf Sci, 397, 77-86 (2017).   DOI
21 R. Z. Wang, D. G. Purdie, Y. Fan, F. C. P. Massabuau, P. Braeuninger-Weimer, O. J. Burton, R. Blurne, R. Schloegl, A. Lombardo, R. S. Weatherup, and S. Hofmann, "A Peeling Approach for Integrated Manufacturing of Large Monolayer h-BN Crystals", Acs Nano, 13, 2114 (2019).   DOI
22 A. Avsar, J. Y. Tan, X. Luo, K. H. Khoo, Y. T. Yeo, K. Watanabe, T. Taniguchi, S. Y. Quek, and B. Ozyilmaz, "van der Waals Bonded Co/h-BN Contacts to Ultrathin Black Phosphorus Devices", Nano Lett., 17, 5361 (2017).   DOI
23 H. A. Chen, W. C. Chen, H. Sun, C. C. Lin, and S. Y. Lin, "Scalable MoS2/graphene hetero-structures grown epitaxially on sapphire substrates for phototransistor applications", Semiconductor Science and Technology, 33(2), 025007 (2018).   DOI
24 X. R. Zong, H. M. Hu, G. Ouyang, J. W. Wang, R. Shi, L. Zhang, Q. S. Zeng, C. Zhu, S. H. Chen, C. Cheng, B. Wang, H. Zhang, Z. Liu, W. Huang, T. H. Wang, L. Wang, and X. L. Chen, "Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications", Light: Science & Applications, 9(1), 1 (2020).   DOI
25 J. Ji, C. M. Delehey, D. N. Houpt, M. K. Heighway, T. Lee, and J. H. Choi, "Selective Chemical Modulation of Interlayer Excitons in Atomically Thin Heterostructures", Nano Lett., 20(4), 2500 (2020).   DOI
26 G. H. Shin, C. Park, K. J. Lee, H. J. Jin, and S. Y. Choi, "Ultrasensitive Phototransistor Based on WSe2-MoS2 van der Waals Heterojunction", Nano Lett., 20(8), 5741 (2020).   DOI
27 J. G. Wang, F. C. Ma, W. J. Liang, and M. T. Sun, "Electrical properties and applications of graphene, hexagonal boron nitride (h-BN), and graphene/h-BN heterostructures", Materials Today Physics, 2, 6 (2017).   DOI
28 S. Bertolazzi, J. Brivio, and A. Kis, "Stretching and Breaking of Ultrathin MoS2", ACS Nano, 5(12), 9703 (2011).   DOI
29 C. X. Huo, Z. Yan, X. F. Song, and H. B. Zeng, "2D materials via liquid exfoliation: a review on fabrication and applications", Science bulletin, 60(23), 1994 (2015).   DOI
30 N. D. Mansukhani, L. M. Guiney, P. J. Kim, Y. C. Zhao, D. Alducin, A. Ponce, E. Larios, M. J. Yacaman, and M. C. Hersam, "High-Concentration Aqueous Dispersions of Nanoscale 2D Materials Using Nonionic, Biocompatible Block Copolymers", Small, 12(3), 294 (2016).   DOI
31 H. C. Diaz, Y. J. Ma, R. Chaghi, and M. Batzill, "High density of (pseudo) periodic twin-grain boundaries in molecular beam epitaxy-grown van der Waals heterostructure: MoTe2/MoS2", Applied Physics Letters, 108(19), 191606 (2016).   DOI
32 S. W. Jung, S. Pak, S. Lee, S. Reimers, S. Mukherjee, P. Dudin, T. K. Kim, M. Cattelan, N. Fox, S. S. Dhesi, C. Cacho, and S. Cha, "Spectral functions of CVD grown MoS2 monolayers after chemical transfer onto Au surface", Appl. Surf. Sci., 532, 147390 (2020).   DOI
33 T. Y. Kim, Y. Song, K. Cho, M. Amani, G. H. Ahn, J. K. Kim, J. Pak, S. Chung, A. Javey, and T. Lee, "Analysis of the interface characteristics of CVD-grown monolayer MoS2 by noise measurements", Nanotechnology, 28(14), 145702 (2017).   DOI
34 A. A. Koos, P. Vancso, M. Szendro, G. Dobrik, D. A. Silva, Z. I. Popov, P. B. Sorokin, L. Henrard, C. Y. Hwang, L. P. Biro, and L. Tapaszto, "Influence of Native Defects on the Electronic and Magnetic Properties of CVD Grown MoSe2 Single Layers", The Journal of Physical Chemistry C, 123(40), 24855 (2019).   DOI
35 G. U. Ozkucuk, C. Odaci, E. Sahin, F. Ay, and N. K. Perkgoz, "Glass-assisted CVD growth of large-area MoS2, WS2 and MoSe2 monolayers on Si/SiO2 substrate", Materials Science in Semiconductor Processing, 105, 104679 (2020).   DOI
36 M. K. S. Bin Rafiq, N. Amin, H. F. Alharbi, M. Luqman, A. Ayob, Y. S. Alharthi, N. H. Alharthi, B. Bais, and M. Akhtaruzzaman, "WS2: A New Window Layer Material for Solar Cell Application", Scientific Reports (Nature Publisher Group), 10(1), 1 (2020).   DOI
37 A. Karatas and M. Yilmaz, "Molybdenum disulfide thin films fabrication from multi-phase molybdenum oxide using magnetron sputtering and CVD systems together", Superlattices and Microstructures, 143, 106555 (2020).   DOI
38 Y. X. Zhang, Y. H. Wang, Z. Z. Xiong, H. J. Zhang, and F. Liang, "Preparation and characterization of WSe2 nano-films by magnetron sputtering and vacuum selenization", Nanotechnology, 29(27), 275201 (2018).   DOI
39 Y. Y. Yu, G. Wang, S. Q. Qin, N. N. Wu, Z. Y. Wang, K. He, and X. A. Zhang, "Molecular beam epitaxy growth of atomically ultrathin MoTe2 lateral heterophase homojunctions on graphene substrates", Carbon, 115, 526 (2017).   DOI
40 Y. Zhang, T. R. Chang, B. Zhou, Y. T. Cui, H. Yan, Z. K. Liu, F. Schmitt, J. Lee, R. Moore, Y. L. Chen, H. Lin, H. T. Jeng, S. K. Mo, Z. Hussain, A. Bansil, and Z. X. Shen, "Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2", Nature Nanotechnology, 9(2), 111 (2014).   DOI
41 D. Andrzejewski, H. Myja, M. Heuken, A. Grundmann, H. Kalisch, A. Vescan, T. Kummell, and G. Bacher, 'Scalable Large-Area p-i-n Light-Emitting Diodes Based on WS2 Monolayers Grown via MOCVD", Acs Photonics, 6(8), 1832 (2019).   DOI
42 S. M. Eichfeld, L. Hossain, Y. C. Lin, A. F. Piasecki, B. Kupp, A. G. Birdwell, R. A. Burke, N. Lu, X. Peng, J. Li, A. Azcatl, S. McDonnell, R. M. Wallace, M. J. Kim, T. S. Mayer, J. M. Redwing, and J. A. Robinson, "Highly Scalable, Atomically Thin WSe2 Grown via Metal-Organic Chemical Vapor Deposition", Acs Nano, 9(2), 2080 (2015).   DOI