• Title/Summary/Keyword: Vapor flow

Search Result 973, Processing Time 0.028 seconds

Properties of $SnO_2$ Thin Films Depending on Reaction Parameter (반응 변수에 따른 $SnO_2$ 박막의 특성)

  • Lee, Jeong-Hoon;Jang, Gun-Eik;Kim, Kyoung-Won;Son, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.356-357
    • /
    • 2006
  • Tin oxide thin films have been prepared on display glass from mixtures of dibutyl tin diacetate as a tin source, oxygen as an oxidant by Plasma Enhanced Chemical Vapor Deposition (PECVD) method. The relationships between the properties of tin oxide thin films and various reaction parameters such as the deposition temperature, deposition time and the oxygen gas flow rate were studied. As the deposition temperature increased, the texture plane of $SnO_2$ changed from (200) plane to denser (211) and (110) planes. Lower deposition temperature and thinner thickness of deposited film led to decreasing grain size, surface roughness and electrical resistivity of the formed thin films at $325{\sim}425^{\circ}C$. The properties of fabricated $SnO_2$ films are highly changed with variations of substrate temperature and deposition time.

  • PDF

Catalytic growth of single wall carbon nanotubes by laser vaporization and its purification and The carbon nanotube growth on the Si substrate by CVD method

  • Lee, Sung won;Jung in Sohn;Lee, Seonghoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.213-213
    • /
    • 2000
  • Direct laser vaporization of transition-metal(Co, Ni)/graphite composite pellet produced single wall carbon naotubes(SWNT) in the condensing vapor in a heated flow cylinder-type tube furnace, Transition metal/graphite composite pellet target was made by mixing graphite, Co, and Ni in 98:1:1 atomic weight ratios, pressing the mixed powder, and curing it. The target was placed in a tube furnace maintained at 1200$^{\circ}C$ and Ar inert collision gas continuously flowed into the tube. The 2nd harmonic, 532nm wavelength light from Nd-YAG laser was used to vaporize the tube. The carbon nanotubes produced by the laser vaporization were accumulated on quartz tube wall. The raw carbon nanotube materials were purified with surfactants(Triton X-100) in a ultrasonicator. These carbon nanotubes were analyzed using SEM, XRD, and Raman spectroscopic method. The carbon nanotube growth on the Ni-patterned Si substrate was investigated by the CVD process. Transition-metal, Ni and CH4 gas were used as a catalyst and a reactant gas, respectively. The structure and the phonon frequencies of the carbon nanotubes formed on the patterned Si substrate were measured by SEM and Raman spectrometer.

  • PDF

Fiber network with superhydrophilic Si-DLC coating

  • Kim, Seong-Jin;Mun, Myeong-Un;Lee, Gwang-Ryeol;Kim, Ho-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.363-363
    • /
    • 2010
  • The high capillarity of a plastic fiber network having superhydrophilic Si-DLC coating is studied. Although the superhydrophilic surface maximize wetting ability on the flat surface, there remains a requirement for the more wettable surface for various applications such as air-filters or liquid-filters. In this research, the PET non-woven fabric surface was realized by superhydrophilic coating. PTE non-woven fabric network was chosen due to its micro-pore structure, cheap price, and productivity. Superhydrophobic fiber network was prepared with a coating of oxgyen plasma treated Si-DLC films using plasma-enhanced chemical vapor deposition (PECVD). We first fabricated superhydrophilic fabric structure by using a polyethylene terephthalate (PET) non-woven fabric (NWF) coated with a nanostructured films of the Si-incorporated diamond-like carbon (Si-DLC) followed by the plasma dry etching with oxygen. The Si-DLC with oxygen plasma etching becomes a superhydrophilic and the Si-DLC coating have several advantages of easy coating procedure at room temperature, strong mechanical performance, and long-lasting property in superhydrophilicity. It was found that the superhydrophobic fiber network shows better wicking ability through micro-pores and enables water to have much faster spreading speed than merely superhydrophilic surface. Here, capillarity on superhydrophilic fabric structure is investigated from the spreading pattern of water flowing on the vertical surface in a gravitational field. As water flows on vertical flat solid surface always fall down in gravitational direction (i.e. gravity dominant flow), while water flows on vertical superhydrophilic fabric surface showed the capillary dominant spreading.

  • PDF

Growth of graphene:Fundamentals and its application

  • Hwang, Chan-Yong;Yu, Gwon-Jae;Seo, Eun-Gyeong;Kim, Yong-Seong;Kim, Cheol-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.38-38
    • /
    • 2010
  • Ever since the experimental discovery of graphene exfoiliated from the graphite flakes by Geim et at., this area has drawn a lot of attention for its possible application in IT industry. For the growth of graphene, chemical vapor deposition (CVD) has been widely used to fabricate the large area graphene. The lateral size of this graphene can be easily controlled by the size of the metal substrate though the chemical etching to remove this substrate is somewhat troublesome. Another problem which is hard to avoid is the folding at the grain boundary. We will discuss the origin of the folding first and introduce the way to avoid this folding. To solve this problem, we have used the various types of micro-thin metal foils. The precise control of hydro-carbon and the carrier gas results in the formation of the graphene on top of substrate. The thickness of graphene layers can be controlled with the control of gas flow on top of Cu substrate in contrast to the previously reported self-limiting growth $behavior^1$. Uniformity of this graphene layer has been checked by micro-raman spectroscopy and SEM. The size of grain can be enhanced by thermal treatment or use of other metal substrate. The dependence of grain size on the lattice size of the substrate will be discussed. By selecting the shape of substrate, we can grow various types of graphene. We will introduce the micron size graphene tube and its application.

  • PDF

A Study on the Imfluence of the Pipe Line of Boiler for Flame Distribution of Combustion Furnace (연소로의 화염분포가 보일러 관로에 미치는 영향에 관한 연구)

  • Cho, Dong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.26 no.6
    • /
    • pp.1435-1441
    • /
    • 2014
  • The fire took place in the synthetic heat transfer fluid boiler used in production process of medium density fiberboard. This study investigated pressure distribution of the first, second and third passes and the temperature in the fire burner. The boiler's internal fluid is unsteady due to the out of order inverter. As the operation continues, the flame's flow and speed are unsteady. The synthetic heat transfer fluid leak spouted about 120kg/min in the form of vapor in the early period of the fire. The flame extended to the second and third passes. The highest temperature of the second and third pass is $1059^{\circ}C$ and $1007^{\circ}C$, respectively. The synthetic heat transfer fluid spouted through the cracked part of the fire box in the first pass and accumulated on the turn table. Therefore, it is expected that the temperature of the interior of the fire box is above $1200^{\circ}C$. The temperature of the burner rises to a maximum level several times in a short period. On account of that, several explosions occur in the fire burner. Pressure distribution at steady state in combustion furnace is 2~5mAq and pressure distribution at inverter under fault condition in combustion furnace is 10~-53mAq. The decrement of coil thickness measurement for synthetic heat transfer fluid boiler is 0~5mm.

Surface Properties of ACL Thin Films Depending on Process Conditions (공정 조건에 따른 비정질 탄소막 표면 물성분석)

  • Kim, Kwang Pyo;Choi, Jeong Eun;Hong, Sang Jeen
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.44-47
    • /
    • 2019
  • Amorphous carbon layer (ACL) is actively used as an etch mask. Recent advances in patterning ACL requires the next level of durability of hard mask in high aspect ratio etch in near future semiconductor manufacturing, and it is worthwhile to know the surface property of ACL thin film to enhance the property of etch hard mask. In this research, ACL are deposited by 6 inch plasma enhanced chemical vapor deposition system with $C_3H_6$ and $N_2$ gas mixture. Surface properties of deposited ACL are investigated depending on gas flow, pressure, RF power. Fourier transform infrared is used for the analysis of surface chemistry, and X-ray photoemission spectra is used for the structural analysis with the consideration of the contents of $sp^2$ and $sp^3$ through fitting of C1s. Also mechanical properties of deposited ACL are measured in order to evaluate hardness.

Numerical prediction of a flashing flow of saturated water at high pressure

  • Jo, Jong Chull;Jeong, Jae Jun;Yun, Byong Jo;Moody, Frederick J.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1173-1183
    • /
    • 2018
  • Transient fluid velocity and pressure fields in a pressurized water reactor (PWR) steam generator (SG) secondary side during the blowdown period of a feedwater line break (FWLB) accident were numerically simulated employing the saturated water flashing model. This model is based on the assumption that compressed water in the SG is saturated at the beginning and decompresses into the two-phase region where saturated vapor forms, creating a mixture of steam bubbles in water by bulk boiling. The numerical calculations were performed for two cases of which the outflow boundary conditions are different from each other; one is specified as the direct blowdown discharge to the atmosphere and the other is specified as the blowdown discharge to an extended calculation domain with atmospheric pressure on its boundary. The present simulation results obtained using the two different outflow boundary conditions were discussed through a comparison with the predictions using a simple non-flashing model neglecting the effects of phase change. In addition, the applicability of each of the non-flashing water discharge and saturated water flashing models for the confirmatory assessments of new SG designs was examined.

Performance of water-jet pump under acceleration

  • Wu, Xian-Fang;Li, Ming-Hui;Liu, Hou-Lin;Tan, Ming-Gao;Lu, You-Dong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.794-803
    • /
    • 2021
  • The instantaneous acceleration affects the performance of the water-jet pump obviously. Here, based on the user-defined function, the method to simulate the inner flow in water-jet pumps under acceleration conditions was established. The effects of two different acceleration modes (linear acceleration and exponential acceleration) and three kinds of different acceleration time (0.5s, 1s and 2s) on the performance of the water-jet pump were analyzed. The results show that the thrust and the pressure pulsation under exponential acceleration are lower than that under linear acceleration at the same time; the vapor volume fraction in the impeller under linear acceleration is 27.3% higher than that under exponential acceleration. As the acceleration time increases, the thrust gradually increases and the pressure pulsation amplitude at the impeller inlet and outlet gradually decreases, while the law of pressure pulsation is the opposite at the diffuser outlet. The main frequency of pressure pulsation at the impeller outlet is different under different acceleration time. The research results can provide some reference for the optimal design of water-jet pumps.

Comparison of carbon nanotube growth mode on various substrate

  • I.K. Song;Y.S. Cho;Park, K.S.;Kim, D.J.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.44-44
    • /
    • 2003
  • Growth mechanism of carbon nanotubes(CNTs) synthesized by chemical vapor deposition is abided by two growth modes. These growth modes are classified by the position of activated catalytic metal particle in the CNTs. Growth mode can be also affected by interaction between substrate and catalytic metal and induced energy such as thermal and plasma. We studied the reaction of catalytic metal to the substrate and growth mode of CNTs. Various substrates such as Si(100), graphite plate, coming glass, sapphire and AAO membrane are used to study the relation between catalytic metal and substrate in the synthesis of CNTs. For catalytic metal, thin film was deposited on various substrate via sputtering technique with a thickness of ∼20nm and magnetic fluids with none-sized particles were dispersed on AAO membrane. After laying process on AAO membrane, it was dried at 80$^{\circ}C$ for 8 hour. Synthesizing of CNTs was carried out at 900$^{\circ}C$ in NH3/C2H2 mixture gases flow for 10minutes.

  • PDF

Closed-Loop Cooling System for High Field Mangets (고자기장용 자석을 위한 밀폐순환형 냉각장치)

  • Choi, Y.S.;Kim, D.L.;Lee, B.S.;Yang, H.S.;Painter, T.A.;Miller, J.R.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.1
    • /
    • pp.59-64
    • /
    • 2006
  • A closed-loop cryogenic cooling system for high field magnets is presented. This design is motivated by our recent development of cooling system for 21 tesla Fourier Transform ion Cyclotron Resonance (FT-ICR) superconducting magnets without any replenishment of cryogen. The low temperature superconducting magnets are immersed in a subcooled 1.8 K bath, which is connected hydraulically to the 4.2 K reservoir through a narrow channel. Saturated liquid helium is cooled by Joule-Thomson heat exchanger and flows through the JT valve, isenthalpically dropping its pressure to approximately 1 6 kPa, corresponding saturation temperature of 1.8 K. Helium gas exhausted from pump is now recondensed by two-stage cryocooler located after vapor purify system. The amount of cryogenic Heat loads and required mass flow rate through closed-loop are estimated by a relevant heat transfer analysis, from which dimensions of JT heat exchanger and He II heat exchanger are determined. The detailed design of cryocooler heat exchanger for helium recondensing is performed. The effect of cryogenic loads, especially superfluid heat leak through the gap of weight load relief valve, on the dimensions of cryogenic system is also investigated.