• Title/Summary/Keyword: Vapor flow

Search Result 973, Processing Time 0.023 seconds

Improvement of the adhesion and resistivity of low-pressure chemical vapor deposited tungsten films by controlling deposition parameters (LPCVD로 증착한 텅스텐 박막의 증착 조건 제어에 의한 접착성 및 저항 특성 향상)

  • 노관종;윤선필;윤영수;노용한
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.4
    • /
    • pp.321-327
    • /
    • 2000
  • Tungsten(W) thin films with good adhesion property and low resistivity (~10 $\mu$\Omega$$.cm) were deposited directly on $SiO_2$ by LPCVD. The adhesion property of W thin films on $SiO_2$ improves as the temperature and/or $SiH_4/WF_6$ gas ratio increase. Specifically tungsten thin films could be deposited on $SiO_2$ even at $350^{\circ}C$ if the gas ratio of 2 was employed. The resistivity of tungsten thin films deposited at $350^{\circ}C$ was high due to the presence of $\beta$-W. However, the resistivity can be minimized by increasing the amount of $H_2$ gas flow. Therefore, it is shown in this work that the adhesion of tungsten thin films on $SiO_2$ can be improved simply by controlling the process parameters (e.g., temperature, gas ratio and $H_2$ flow rate) without employing complex deposition methods or additional glue layers.

  • PDF

Fabrication of Hot Electron Based Photovoltaic Systems using Metal-semiconductor Schottky Diode

  • Lee, Young-Keun;Jung, Chan-Ho;Park, Jong-Hyurk;Park, Jeong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.305-305
    • /
    • 2010
  • It is known that a pulse of electrons of high kinetic energy (1-3 eV) in metals can be generated with the deposition of external energy to the surface such as in the absorption of light or in exothermic chemical processes. These energetic electrons are not in thermal equilibrium with the metal atoms and are called "hot electrons" The concept of photon energy conversion to hot electron flow was suggested by Eric McFarland and Tang who directly measured the photocurrent on gold thin film of metal-semiconductor ($TiO_2$) Schottky diodes [1]. In order to utilize this scheme, we have fabricated metal-semiconductor Schottky diodes that are made of Pt or Au as a metallic layer, Si or $TiO_2$ as a semiconducting substrate. The Pt/$TiO_2$ and Pt/Si Schottky diodes are made by PECVD (Plasma Enhanced Chemical Vapor Deposition) for $SiO_2$, magnetron sputtering process for $TiO_2$, e-beam evaporation for metallic layers. Metal shadow mask is made for device alignment in device fabrication process. We measured photocurrent on Pt/n-Si diodes under AM1.5G. The incident photon to current conversion efficiency (IPCE) at different wavelengths was measured on the diodes. We also show that the steady-state flow of hot electrons generated from photon absorption can be directly probed with $Pt/TiO_2$ Schottky diodes [2]. We will discuss possible approaches to improve the efficiency of photon energy conversion.

  • PDF

Optimization of Analytical Procedure for Hydrogen Cyanide in Mainstream Smoke

  • Lee, John-Tae;Kim, Hyo-Keun;Hwang, Keon-Joong;Jang, Gi-Chul;Lee, Jeong-Min;Kim, Ick-Joong
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.29 no.2
    • /
    • pp.125-131
    • /
    • 2007
  • Hydrogen cyanide(HCN), formed from pyrolysis of various nitrogenous compounds such as protein, amino acids and nitrate in tobacco, is present in both the particulate phase and vapor phase of cigarette smoke. Typically the determination of HCN in cigarette smoke has been done through colorimetric and electrochemical techniques, such as fluorescence spectrometry, UV-spectrophotometry (UV), continuous flow analyzer (CFA), capillary GC-ECD and ion chromatography (IC). Most of these techniques are known to be time-consuming and some of them lack specificity or sensitivity. The available results from both our laboratory and reported literatures for 2R4F Kentucky reference cigarette, smoked under ISO condition, show a relatively wide variation ranging from 100 to 120 ug/cig of HCN. Especially, the precision and accuracy of the analytical results of HCN tend to get worse in low tar cigarettes and under intense smoking condition. In this paper, a more optimized analytical methods than previous ones are suggested. This method shows lower detection limit and has improved precision and accuracy, so it is applicable for wide tar level cigarettes under intense smoking condition as well as under ISO smoking condition. Important features of this method are improved sample collection and quantification systems such as the number of trapping units, volume, temperature and type of trapping solution. To avoid volatilization loss of HCN in analyzing mainstream smoke, it is highly recommended that pH values of trapping solutions should be maintained over 11 and cold traps should be used in collecting mainstream smoke.

A Study of a Changing of Physical and Chemical Intra-structure on Si-DLC Film during Tribological Test (실리콘 함유 DLC 박막의 마찰마모 시험에 의한 물리적 특성 및 화학적 결합 구조 변화 고찰)

  • Kim, Sang-Gweon;Lee, Jae-Hoon;Kim, Sung-Wan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.3
    • /
    • pp.127-132
    • /
    • 2011
  • The silicon-containing Diamond-like Carbon (Si-DLC) film as an low friction coefficient coating has especially treated a different silicon content by plasma-enhanced chemical vapor deposition (PECVD) process at $500^{\circ}C$ on nitrided-STD 11 mold steel with (TMS) gas flow rate. The effects of variable silicon content on the Si-DLC films were tested with relative humidity of 5, 30 and 85% using a ball-on-disk tribometer. The wear-tested and original surface of Si-DLC films were analysed for an understanding of physical and chemical characterization, including a changing structure, via Raman spectra and nano hardness test. The results of Raman spectra have inferred a changing intra-structure from dangling bonds. And high silicon containing DLC films have shown increasing carbon peak ratio ($I_D/I_G$) values and G-peak values. In particular, the tribological tested surface of Si-DLC was shown the increasing hardness value in proportional to TMS gas flow rate. Therefore, at same time, the structure of the Si-DLC film was changed to a different intra-structure and increased hardness film with mechanical shear force and chemical reaction.

The Effect of Compliance Structures Near the Mechanical Heart Valve on Valve Surface Erosion (기계식 인공 판막 주위의 유연성 구조가 표면 괴식에 미치는 영향)

  • Lee, Hwan-Sung;Hwang, Sung-Won;Sun, Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.309-315
    • /
    • 2002
  • Since the discovery, in the 1980s, of erosion-pit-induced fractures in implanted mechanical heart valves. cavitation on the surface of mechanical heart valves has been widely studied as a possible cause of pitting. Several factors, including peak dp/dt of the ventricular pressure. maximum closing velocity of the leaflet, and squeeze flow. have been studied as indices of the cavitation threshold. In the present study. cavitation erosion on the surface of a mechanical valve was examined by focusing on squeeze flow and the water hammer phenomenon during the closing period of the valve. In this study, we measures pressure wave forms near a valve and closing velocities of a disk, which were placed in a holder with and without compliance. In case of all holders, pressure drop of below vapor pressure expect at near the surface disk. It was also found that the closing velocity of the disk increased and that cavitation erosion was enhanced too. These results suggest that disk closing velocity during the closing phase has signifiant effects on pitting erosion.

Volatility of Herbicides Sprayed in Zoysia japonica Turf and Bare Soil (잔디밭과 나지에 산포된 주요 잔디밭용 제초제의 휘산)

  • 김석정;박진희;죽내안지;김길웅;신동현;허영조
    • Asian Journal of Turfgrass Science
    • /
    • v.10 no.3
    • /
    • pp.263-270
    • /
    • 1996
  • This experiment was conducted to investigate the loss of various herbicides by means of vola-tility from the turfgrass field and the hare ground with the different soil moisture contents and temperatures. Different herbicides were applied at the rates of 375 g a.i. /l0a of pendimethalin,250 g a.i. /l0a of napropamide, and 96.4 g a.i. /l0a of dicamba with 200 \ulcorner/10a of spray volume in the turfgrass(Zoysia japonica cut off 5cm) grown in pots(265.8 $cm^2$) and bared soil. The pots were placed in the growth chamber with 10,000 lux of light intensity(12h per day) at 25 and 35˚C for 7days. Amberlite XAD polymeric resin(20/50 mesh) was used as sampling media for herbicide airborne residues. Air flow was maintained at 10 \ulcorner /min by vacuum pump regulated with a factory calibrated flow meter. Herbicide airborne residues were extracted from the XAD resin with 300 ml of 1:1 acetone and hexane. The extracts were concentrated by rotary evaporation at 35˚C and dissolved in 1 ml MeCN for HPLC analysis. The airborne losses of the herbicide applied in the turfgrass and bare soil increased as the temperature and soil moisture contents were increased, regardless of the kinds of herbicide. Higher airborne residues was observed in the turfgrass pots than the bare soil pots. Pendimethalin and dicamba with higher vapor pressure gave rise to the increased loss of airborne herbicides, showing that 6.26 and 6.4% of average airborne loss in pendimethalin and dicamba, respectively, compared to 0.56% in napropamide. The amount of airborne losses in turfgrass was highest at one day after application and then a declined trend was observed as the time was prolonged. Key words. Herbicides, Turfgrass field, Bare ground, Volatility.

  • PDF

The various bonding structure of SiOC thin films attributed to the carbon density (탄소밀도의 변화가 SiOC 박막의 결합구조에 미치는 영향)

  • Oh Teresa
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.5 s.347
    • /
    • pp.11-16
    • /
    • 2006
  • This paper reports the correlation between dielectric constant and degree of amorphism of the hybrid type SiOC thin films. SiOC thin films were deposited by high density plasma chemical vapor deposition using bistrimethyl- silylmethane(BTMSM,$H_{9}C_{3}-Si-CH_{2}-Si-C_{3}H_{9}$) and oxygen precursors with various flow rate ratio. As-deposited film and annealed films at $400^{\circ}C$ were analyzed by XRD. The SiOC thin films were amorphous from XRD patterns. For quantitative analysis, the diffraction pattern of the samples was transformed to radial distribution function by Fourier analysis, and then compared with each other. The degree of amorphism of annealed films was higher than that of as-deposited ones. The dielectric constant varied in accordance with flow rate ratio of precursors. The lowest dielectric constant was obtained from the as-deposited film which has the highest degree of amorphism after annealing.

Thermodynamic Prediction of SiC Deposition in C3H8-SiCl4-H2 System (C3H8-SiCl4-H2 시스템에서의 탄화 실리콘 증착에 대한 열역학적인 해석)

  • Kim, Jun-Woo;Jeong, Seong-Min;Kim, Hyung-Tae;Kim, Kyung-Ja;Lee, Jong-Heun;Choi, Kyoon
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.3
    • /
    • pp.236-240
    • /
    • 2011
  • In order to deposit a homogeneous and uniform ${\beta}$-SiC films by chemical vapor deposition, we demonstrated the phase stability of ${\beta}$-SiC over graphite and silicon via computational thermodynamic calculation considering pressure, temperature and gas composition as variables. The ${\beta}$-SiC predominant region over other solid phases like carbon and silicon was changed gradually and consistently with temperature and pressure. Practically these maps provide necessary conditions for homogeneous ${\beta}$-SiC deposition of single phase. With the thermodynamic analyses, the CVD apparatus for uniform coating was modeled and simulated with computational fluid dynamics to obtain temperature and flow distribution in the CVD chamber. It gave an inspiration for the uniform temperature distribution and low local flow velocity over the deposition chamber. These calculation and model simulation could provide milestones for improving the thickness uniformity and phase homogeneity.

Growth characteristics of single-crystalline 6H-SiC homoepitaxial layers grown by a thermal CVD (화학기상증착법으로 성장시킨 단결정 6H-SiC 동종박막의 성장 특성)

  • 장성주;설운학
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.1
    • /
    • pp.5-12
    • /
    • 2000
  • As a semiconductor material for electronic devices operated under extreme environmental conditions, silicon carbides (SiCs) have been intensively studied because of their excellent electrical, thermal and other physical properties. The growth characteristics of single- crystalline 6H-SiC homoepitaxial layers grown by a thermal chemical vapor deposition (CVD) were investigated. Especially, the successful growth condition of 6H-SiC homoepitaxial layers using a SiC-uncoated graphite susceptor that utilized Mo-plates was obtained. The CVD growth was performed in an RF-induction heated atmospheric pressure chamber and carried out using off-oriented ($3.5^{\circ}$tilt) substrates from the (0001) basal plane in the <110> direction with the Si-face side of the wafer. In order to investigate the crystallinity of grown epilayers, Nomarski optical microscopy, transmittance spectra, Raman spectroscopy, XRD, Photoluninescence (PL) and transmission electron microscopy (TEM) were utilized. The best quality of 6H-SiC homoepitaxial layers was observed in conditions of growth temperature $1500^{\circ}C$ and C/Si flow ratio 2.0 of $C_3H_8$ 0.2 sccm & $SiH_4$ 0.3 sccm.

  • PDF

A Study on Performance Improvement in Durability and Reliability of LPi Injector (LPI 인젝터의 성능 및 내구성 개선에 관한 연구)

  • Park, Cheol-Woong;Kim, Chang-Up;Choi, Kyo-Nnam;Baik, Seung-Kook;Shin, Moon-Sung
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.2
    • /
    • pp.38-44
    • /
    • 2012
  • In recent years, the need for more fuel-efficient and lower-emission vehicles has driven the technical development of alternative fuels such as LPi (Liquid phase LPG injection) which uses pump for the high pressure supply of liquid LPG fuel and is able to meet the limits of better emission levels while it has an advantage of higher power. Although it has the advantage of power and lower emission levels, the characteristics of LPG, such as high vapor pressure, lower viscosity and surface tension than gasoline fuels makes it difficult design system. Therefore most fuel pumps and injectors are imported. In the present study, in order to domestically develop LPG injector which guarantees flow rates and optimal operation, the experimental investigation on leakage and flow rate characteristics of developed prototype injector was carried out at the bench test rig for developed injector.