• Title/Summary/Keyword: Vapor flow

Search Result 973, Processing Time 0.021 seconds

Optical and Electrical Properties of Fluorine-Doped Tin Oxide Prepared by Chemical Vapor Deposition at Low Temperature (저온 증착된 불소도핑 주석 산화 박막의 광학적·전기적 특성)

  • Park, Ji Hun;Jeon, Bup Ju
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.517-524
    • /
    • 2013
  • The electrical and optical properties of fluorine-doped tin oxide films grown on polyethylene terephthalate film with a hardness of 3 using electron cyclotron resonance plasma with linear microwave of 2.45 GHz of high ionization energy were investigated. Fluorine-doped tin oxide films with a magnetic field of 875 Gauss and the highest resistance uniformity were obtained. In particular, the magnetic field could be controlled by varying the distribution in electron cyclotron deposition positions. The films were deposited at various gas flow rates of hydrogen and carrier gas of an organometallic source. The surface morphology, electrical resistivity, transmittance, and color in the visible range of the deposited film were examined using SEM, a four-point probe instrument, and a spectrophotometer. The electromagnetic field for electron cyclotron resonance condition was uniformly formed in at a position 16 cm from the center along the Z-axis. The plasma spatial distribution of magnetic current on the roll substrate surface in the film was considerably affected by the electron cyclotron systems. The relative resistance uniformity of electrical properties was obtained in film prepared with a magnetic field in the current range of 180~200A. SEM images showing the surface morphologies of a film deposited on PET with a width of 50 cm revealed that the grains were uniformly distributed with sizes in the range of 2~7 nm. In our experimental range, the electrical resistivity of film was able to observe from $1.0{\times}10^{-2}$ to $1.0{\times}10^{-1}{\Omega}cm$ where optical transmittance at 550 nm was 87~89 %. These properties were depended on the flow rate of the gas, hydrogen and carrier gas of the organometallic source, respectively.

Refractive index control of F-doped SiOC : H thin films by addition fluorine (Fluorine 첨가에 의한 F-doped SiOC : H 박막의 저 굴절률 특성)

  • Yoon, S.G.;Kang, S.M.;Jung, W.S.;Park, W.J.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.2
    • /
    • pp.47-51
    • /
    • 2007
  • F-doped SiOC : H thin films with low refractive index were deposited on Si wafer and glass substrate by plasma enhanced chemical vapor deposition (PECVD) as a function of rf powers, substrate temperatures, gas rates and their composition flow ratios ($SiH_4,\;CF_4$ and $N_2O$). The refractive index of the F-doped SiOC : H film continuously decreased with increasing deposition temperature and rf power. As $N_2O$ gas flow rate decreased, the refractive index of the deposited films decreased down to 1.3778, reaching a minimum value at rf power of 180W and $100^{\circ}C$ without $N_2O$ gas. The fluorine content of F-doped SiOC : H film increased from 1.9 at% to 2.4 at% as the rf power was increased from 60 W to 180 W, which results in the decrease of refractive index.

Variability of Calibration Factors for Open-Path CO2/H2O Infrared Gas Analyzer and Its Effect on Long-Term Flux Measurement (개회로 CO2/H2O 적외선 기체 분석기 보정 인자의 변동성과 장기 플럭스 관측에 미치는 영향)

  • Choi, Tae-jin;Yun, Jin-I.;Lim, Jong-Hwan;Park, Eun-Woo;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.2
    • /
    • pp.103-113
    • /
    • 2002
  • Calibration experiments were executed to document pertinent calibration methods for open-path infrared gas analyzer (OP-2) in field operations and to quantify their performance characteristics in continuous long-term flux measurements. Based on our results, we concluded: (1) flow rate of 2.0 L min$^{-1}$ can be used for calibration instead of the recommended 0.5 L min$^{-1}$ . Such faster flow rate brings the sampled air in the calibration hood at equilibrium within 5 min for $CO_2$ and 10 min for $H_2O$; (2) after reaching equilibrium, two-minute average sampling for related variables per each concentration may be sufficient; (3) use of four concentration is needed to derive the nonlinear calibration equation for water vapor with 1% uncertainty of flux measurement; and (4) the resultant calibration interval for OP-2 for both $CO_2$ and $H_2O$ is approximately one month.

Low Temperature Deposition a-SiNx:H Using ICP Source (ICP Source를 이용한 저온 증착 a-SiNx:H 특성 평가)

  • Kang, Sung-Chil;Lee, Dong-Hyeok;So, Hyun-Wook;Jang, Jin-Nyoung;Hong, Mun-Pyo;Kwon, Kwang-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.532-536
    • /
    • 2011
  • The silicon nitride films were prepared by chemical vapor deposition using inductively coupled plasma. During the deposition, the substrate was heated at $150^{\circ}C$ and power 1,000 W. To evolution low temperature manufacture, we have studied the role of source gases, $SiH_4$, $NH_3$, $N_2$, and $H_2$, to produce Si-N and N-H bond in a-SiNx:H film growth. $SiH_4$, $NH_3$, and $N_2$ flow rate fixed at 100, 10, and 10 sccm, $H_2$ flow rate varied from 0 to 10 sccm by small scale. To get the electrical characteristics, we makes MIM structure, and analysis surface bonding state. Experimental data show that Si-N and N-H bond is increased and hence electrical characteristics is showed 3 MV/cm breakdown-voltage, and leakage-current $10^{-7}\;A/cm^2$.

Numerical Analysis for Drag Force of Underwater Vehicle with Exhaust Injected inside Supercavitation Cavity (초공동 수중비행체의 공동영역 내부에서 분사된 배기가스가 수중비행체의 항력에 미치는 영향에 대한 수치해석적 연구)

  • Yoo, Sang Won;Lee, Woo Keun;Kim, Tea Soon;Kwack, Young Kyun;Ko, Sung Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.12
    • /
    • pp.913-919
    • /
    • 2015
  • A supercavitating vehicle has a speed of more than 300 km/h in water. A numerical analysis of the flow around a supercavitating vehicle must deal with a multiphase flow consisting of the water, vapor and exhaust gas because the vehicle is powered by roket propulsion. The effect of the exhaust gas on the vehicle is an important part in the study of the performance of the supercavitating vehicle. In the present study, the effect of the exhaust gas on the drag of vehicle was investigated by conducting numerical analysis. When there is no exhaust gas, drag of vehicle is affected by re-entrant. In the case with rocket propulsion, the exhaust gas reduces the influence of re-entrant. The exhaust gas also creates Mach disk and it changes drag profile.

Numerical Analysis for Optimization of Film Uniformity and Deposition Grow Rate in the Vertical Cylindric Reactor (수직 원통형 CVD 반응로에서 박막의 균일성과 증착률 최적화에 대한 수치해석적 연구)

  • Kim, Jong-Hui;Kim, Hong-Je;O, Seong-Mo;Lee, Geon-Hwi;Lee, Bong-Gu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.92-99
    • /
    • 2002
  • This work investigated the optimal condition for an uniform deposition growth rate in the vertical cylindric CVD chamber. Heat transfer, surface chemical reaction and mass diffusion in the flow field of CVD chamber h,id been computed using Fluent v5.3 code. A SIMPLE based finite Volume Method (FVM) was adopted to solve the fully elliptic equations for momentum, temperature and concentration of a chemical species. The numerical analysis results show good agreements with the measurements obtained by N. Yoshikawa. The results obtained by the numerical analysis showed that the film growth rate in the center of a susceptor is increasing, as the inner flow approaches to the forced convection. To the contrast, as it approaches to the natural convection, that in the outside of a susceptor is increasing. As the Reynolds number increases, the uniformity may not hold due to the larger temperature gradient at a susceptor surface. Therefore, when the temperature gradient on the surface of a susceptor is zero, the film growth rate becomes uniform on most surface.

A Study on the Diffuser Inlet Shape of Thermocompressor for MED Desalination Plant (다중효용 담수설비용 열압축기의 디퓨져 입구부 형상에 관한 연구)

  • Jin, Chang-Fu;Song, Young-Ho;Kim, Kyung-Keun;Park, Gi-Tae;Chung, Han-Shik;Choi, Du-Youl
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.869-876
    • /
    • 2008
  • A thermocompressor is the equipment which compresses a vapor to a desired discharge pressure. Since it was first used as the evacuation pump for a surface condenser, it has been widely adopted for energy saving systems due to its high working confidence. In the present study, the geometrical analysis of the shape between the jet nozzle and the diffuser inlet, the drag force was calculated by means of the integrated equation of motion and the computational fluid dynamic (CFD) package called FLUENT. The computer simulations were performed to investigate the effects by the various suction flow rates, the distance from jet nozzle outlet to the diffuser inlet and the dimensions of the diffuser inlet section through the iterative calculation. In addition, the results from the CFD analysis on the thermocompressor and the experiments were compared for the verification of the CFD results. In the case of a jet nozzle, the results from the CFD analysis showed a good agreement with the experimental results. Furthermore, in this study, a special attention was paid on the performance of the thermocompressor by varying the diffuser convergence angle of $0.0^{\circ}$, $0.5^{\circ}$, $1.0^{\circ}$, $2.0^{\circ}$, $3.5^{\circ}$ and $4.5^{\circ}$. With the increase of the diffuser convergence angle. the suction capacity was improved up to the degree of $1.0^{\circ}$ while it was decreased over the degree of $1.0^{\circ}$.

A study on the transient cooling process of a vertical-high temperature tube in an annular flow channel (환상유로에 있어서 수직고온관의 과도적 냉각과정에 관한 연구)

  • 정대인;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.156-164
    • /
    • 1986
  • In the case of boiling on high temperature wall, vapor film covers fully or parcially the surface. This phenomenon, film boiling or transition boiling, is very important in the surface heat treatment of metal, design of cryogenic heat exchanger and emergency cooling of nuclear reactor. Mainly supposed hydraulic-thermal accidents in nuclear reactor are LCCA (Loss of Coolant Accident) and PCM (Power-Cooling Mismatch). Recently, world-wide studies on reflooding of high temperature rod bundles after the occurrence of the above accidents focus attention on wall temperature history and required time in transient cooling process, wall superheat at rewet point, heat flux-wall superheat relationship beyond the transition boiling region, and two-phase flow state near the surface. It is considered that the further systematical study in this field will be in need in spite of the previous results in ref. (2), (3), (4). The paper is the study about the fast transient cooling process following the wall temperature excursion under the CHF (Critical Heat Flux) condition in a forced convective subcooled boiling system. The test section is a vertically arranged concentric annulus of 800 mm long and 10 mm hydraulic diameter. The inner tube, SUS 304 of 400 mm long, 8 mm I.D, and 7 mm O.D., is heated uniformly by the low voltage AC power. The wall temperature measurements were performed at the axial distance from the inlet of the heating tube, z=390 mm. 6 chromel- alumel thermocouples of 76 .mu.m were press fitted to the inner surface of the heating tube periphery. To investigate the heat transfer characteristics during the fast transient cooling process, the outer surface (fluid side) temperature and the surface heat flux are computed from the measured inner surface temperature history by means of a numerical method for inverse problems of transient heat conduction. Present cooling (boiling) curve is sufficiently compared with the previous results.

  • PDF

Performance Analysis of Ejector-Pump Thermal Energy Conversion System Using Various Working Fluids (이젝터-펌프 온도차발전시스템의 작동유체별 성능분석)

  • Yoon, Jung-In;Seol, Sung-Hoon;Son, Chang-Hyo;Choi, Kwang-Hwan;Kim, Young-Bok;Lee, Ho-Saeng;Kim, Hyeon-Ju;Moon, Jung-Hyun
    • Journal of Power System Engineering
    • /
    • v.20 no.6
    • /
    • pp.87-92
    • /
    • 2016
  • This research dealt with performance characteristics of OTEC system applying an ejector and additional pump. Each system using five kinds of working fluids was analyzed, and primary parameters with respect to entrainment ratio were examined: Turbine gross power, evaporation capacity, pump work, efficiency and volume flow ratio. The primary results were as following. The efficiency of ejector-pump OTEC system was dependent on entrainment of the ejector. The degree of efficiency change was different from applied working fluid, and amount of pump work was turned out to be primary factor affected system efficiency. Meanwhile, optimized entrainment ratio was different from applied working fluid since their different vapor density. System efficiency at optimized entrainmet ratio of each working fluid was around 5%, showing minor difference each other.

Evaporation Theory for Reclaimed Clay (준설 점토 지반에서의 증발 이론 개발)

  • 이형주;이인모;이영남;성상규
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.55-64
    • /
    • 2003
  • Desiccation of a soil is basically the removal of water by evaporation, which is controlled by evaporativity and evaporability. Surface evaporation improves the trafficability which is essential for the access of construction equipment in the area reclaimed with soft clay. The existing traditional methods for evaluating evaporation can not account for the deformation of reclaimed soft soils during evaporation. Therefore, a theoretical model for predicting the rate of evaporation from the surface of a deformable material is proposed. The model is based on a system of equations for coupled heat and mass transfer in unsaturated soils. The modified pressure plate extractor test and glass desiccator test were carried out to obtain the soil-water characteristic curve for a deformable soil. The column drying test was conducted to investigate one dimensional water flow, heat flow and evaporation in the surface. A finite difference program was developed to solve the coupled nonlinear partial differential equations, which permit the study of water, vapor and heat flows in the deformable soil. Comparison between measured and simulated values shows a reasonably good matching between the two.