• Title/Summary/Keyword: Vapor film thickness

Search Result 313, Processing Time 0.026 seconds

The Organic-Inorganic Hybrid Encapsulation Layer of Aluminium Oxide and F-Alucone for Organic Light Emitting Diodes

  • Gwon, Deok-Hyeon;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.374-374
    • /
    • 2012
  • Nowadays, Active Matrix Organic Light-Emitting Diodes (AM-OLEDs) are the superior display device due to their vivid full color, perfect video capability, light weight, low driving power, and potential flexibility. One of the advantages of AM-OLED over Liquid Crystal Display (LCD) lies in its flexibility. The potential flexibility of AM-OLED is not fully explored due to its sensitivity to moisture and oxygen which are readily present in atmosphere, and there are no flexible encapsulation layers available to protect these. Therefore, we come up with a new concept of Inorganic-Organic hybrid thin film as the encapsulation layer. Our Inorganic layer is Al2O3 and Organic layer is F-Alucone. We deposited these layers in vacuum state using Atomic Layer Deposition (ALD) and Molecular Layer Deposition (MLD) techniques. We found the results are comparable to commercial requirement of 10-6 g/m2 day for Water Vapor Transmission Rate (WVTR). Using ALD and MLD, we can control the exact thin film thickness and fabricate more dense films than chemical or physical vapor deposition methods. Moreover, this hybrid encapsulation layer potentially has both the flexibility of organic layers and superior protection properties of inorganic layer.

  • PDF

Fluorinated amorphous carbon thin films grown by plasma enhanced chemical vapor deposition with $C_4$F$_8$ and $Si_2H_6/He$ for low dielectric constant intermetallic layer dielectrics

  • Kim, Howoon;Shin, Jang-Kyoo;Kwon, Dae-Hyuk;Lee, Gil S.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.7 no.2
    • /
    • pp.33-38
    • /
    • 2003
  • Fluorinated amorphous carbon thin films (a-C:F) for the use of low dielectric constant intermetallic layer dielectrics are deposited by plasma enhanced chemical vapor deposition with $C_4$F$_{8}$ and Si$_2$H$_{6}$/He gas mixture as precursors. To characterize and improve film properties, we changed various conditions such as deposition temperature, and RF power, and we measured the thickness and refractive indexes and FT-IR spectrum before and after annealing. At low temperatures the film properties were very poor although the growth rate was very high. On the other hand, the growth rate was low at high temperature. The growth rate increased in accordance with the deposition pressure. The dielectric constants of samples were in the range of 1.5∼5.5∼5.

  • PDF

Vertically Standing Graphene on Glass Substrate by PECVD

  • Ma, Yifei;Hwang, Wontae;Jang, Haegyu;Chae, Heeyeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.232.2-232.2
    • /
    • 2014
  • Since its discovery in 2004, graphene, a sp2-hybridized 2-Dimension carbon material, has drawn enormous attention. A variety of approaches have been attempted, such as epitaxial growth from silicon carbide, chemical reduction of graphene oxide and CVD. Among these approaches, the CVD process takes great attention due to its guarantee of high quality and large scale with high yield on various transition metals. After synthesis of graphene on metal substrate, the subsequent transfer process is needed to transfer graphene onto various target substrates, such as bubbling transfer, renewable epoxy transfer and wet etching transfer. However, those transfer processes are hard to control and inevitably induce defects to graphene film. Especially for wet etching transfer, the metal substrate is totally etched away, which is horrendous resources wasting, time consuming, and unsuitable for industry production. Thus, our group develops one-step process to directly grow graphene on glass substrate in plasma enhanced chemical vapor deposition (PECVD). Copper foil is used as catalyst to enhance the growth of graphene, as well as a temperature shield to provide relatively low temperature to glass substrate. The effect of growth time is reported that longer growth time will provide lower sheet resistance and higher VSG flakes. The VSG with conductivity of $800{\Omega}/sq$ and thickness of 270 nm grown on glass substrate can be obtained under 12 min growing time. The morphology is clearly showed by SEM image and Raman spectra that VSG film is composed of base layer of amorphous carbon and vertically arranged graphene flakes.

  • PDF

Hybrid Passivation for a Flexible Organic Light Emitting Diode (다층 구조의 Hybrid flexible 박막 기술 연구)

  • Lee, Whee-Won;Kim, Young-Hwan;Seo, Dae-Shik;Kim, Yong-Hoon;Moon, Dae-Gyu;Han, Jeong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.269-270
    • /
    • 2005
  • A hybrid passivation method using parylene and silicon dioxide combination layer for a flexible organic light emitting diode (FOLED) was applied on a polycarbonate substrate. A parylene coating by vapor polymerization method is a highly effective passivation process for the FOLED, and it applies all top surface and the edges of the FOLED device. In order to minimize the permeation of moisture and oxygen from the top surface of the device, an additional layer of silicon dioxide was deposited over the parylene coated layer. It was found that the water vapor transmittance rate (WVTR) of parylene (15 m-in-thickness) / SiO2 (0.3$\mu$m-in-thickness) combination layers deposited on polycarbonate film was decreased under the value of 10-3 g/m2day. The FOLED with the hybrid passivation showed remarkably longer lifetime characteristics in the ambient conditions than the non-passivated FOLED. The lifetime of the passivated FOLED was 400 hours and it was more than ten times over the lifetime of the convectional non-passivated FOLED.

  • PDF

Investigation of the interface between diamond film and silicon substrate using transmission electron microscopy (투과 전자 현미경을 이용한 다이아몬드 박막과 실리콘 기판의 계면 연구)

  • 김성훈
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.2
    • /
    • pp.100-104
    • /
    • 2000
  • Diamond film was deposited on Si substrate by using microwave plasma-enhanced chemical vapor deposition (MPECVD) system. After thinning the cross section between diamond film and Si substrate by ion milling method, we investigated its interface via transmission electron microscopy We could observe that the diamond film was grown either directly on Si substrate or via the interlayer between diamond film and Si substrate. Thickness of the interlayer was varied along the cross section. The interlayer might mainly composed of Sic andlor amorphous carbon. We could observe the well-developed electron diffraction pattern of both Si and diamond around the interface. Based on this result, we can conjecture the initial growth behavior of diamond film on Si substrate.

  • PDF

Electrical and Optical properties of TiO2-doped ZnO Films prepared on PEN by RF-magnetron Sputtering Method (고주파 마그네트론 스퍼터링에 의해 성막된 TiO2가 도핑된 ZnO 박막의 전기적 및 광학적 특성)

  • Kim, Hwa-Min;Sohn, Sun-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.10
    • /
    • pp.837-843
    • /
    • 2009
  • $TiO_2$(2 wt.%)-doped ZnO(TZO) films with thickness from 100 nm to 500 nm were prepared on polyethylene naphthalate(PEN) substrate under various rf-power range from 40 W to 80 W. Their electrical and optical properties were investigated as a function of rf-power. We think that these properties were closely related with the crystallization and the film density of TZO films. It was also presumed that the vaporization of the water vapor and other adsorbed particles such as an organic solvents can affect the electrical properties of the conventional transparent conductive oxide(TCO) films. On the other hand, since the TZO film deposited on glass substrate at room temperature with rf-power of 80 W shows a very low resistivity of $7.5\times10^{-4}\;\Omega{\cdot}cm$ and a very excellent transmittance over an average 85% in the visible range, that is comparable to that of ITO films. Therefore, we expect that the TZO films can be used as transparent electrode for optoelectronic devices such as touch-panels, flat-panel displays, and thin-film solar cells.

Abnormal Detection in 3D-NAND Dielectrics Deposition Equipment Using Photo Diagnostic Sensor

  • Kang, Dae Won;Baek, Jae Keun;Hong, Sang Jeen
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.74-84
    • /
    • 2022
  • As the semiconductor industry develops, the difficulty of newly required process technology becomes difficult, and the importance of production yield and product reliability increases. As an effort to minimize yield loss in the manufacturing process, interests in the process defect process for facility diagnosis and defect identification are continuously increasing. This research observed the plasma condition changes in the multi oxide/nitride layer deposition (MOLD) process, which is one of the 3D-NAND manufacturing processes through optical emission spectroscopy (OES) and monitored the result of whether the change in plasma characteristics generated in repeated deposition of oxide film and nitride film could directly affect the film. Based on these results, it was confirmed that if a change over a certain period occurs, a change in the plasma characteristics was detected. The change may affect the quality of oxide film, such as the film thickness as well as the interfacial surface roughness when the oxide and nitride thin film deposited by plasma enhenced chemical vapor deposition (PECVD) method.

Catalytic growth of carbon nanotubes using plasma enhanced chemical vapor deposition(PECVD) (플라즈마 화학 증착법을 이용한 탄소나노튜브의 촉매 성장에 관한 연구)

  • 정성회;장건익
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.935-938
    • /
    • 2001
  • Carbon nanotubes(CNTs) was successfully grown on Ni coated silicon wafer substrate by applying PECVD technique(Plasma Enhanced Chemical Vapor Deposition). As a catalyst, Ni thin film of thickness ranging from 15∼30nm was prepared by electron beam evaporator method. In order to find the optimum growth condition, the type of the gas mixture such as C$_2$H$_2$-NH$_3$was systematically investigated by adjusting the gas mixing ratio in temperature of 600$^{\circ}C$ under the pressure of 0.4 torr. The diameter of the grown CNTs was 40∼150nm. As NH$_3$etching time increased the diameters of the nanotubes decreased whereas the density of nanotubes increased. TEM images clearly demonstrated synthesized nanotubes was multiwalled. We investigated electrical properties for the application of FED.

  • PDF

Development of High Voltage TFT by Discharge Plasma Chemical Vapor Depoisition (방전 플라즈마 CVD에 의한 전력용 고합 TFT의 개발)

  • Lee, Woo-Sun;Kang, Yong-Chul;Kim, Byung-In;Yang, Tae-Whan;Chung, Hae-In;Chung, Yong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.05a
    • /
    • pp.137-141
    • /
    • 1993
  • We studied the fabrication and electrical characteristics of high voltage hydrogenerated amorphous silicon thin film transistor using glow discharge plasma enchanced chemical vapor deposition (GDPECVD) with $2500{\AA}\;SiO_2$, $400-1500{\AA}$ a-Si thickness, 350V output voltage, 100V input voltaege, and $9.55{\times}10^4$ average on/off ratio. We found that leakage current of high voltage TFT occured 0-70V drain voltage.

  • PDF

Effect of Deposition Parameters on TiN by Plasma Assisted Chemical Vapor Deposition(III) -Influence of r.f. power and electrode distance on the Tin deposition- (플라즈마 화학증착법에서 증착변수가 TiN 증착에 미치는 영향(III) -r.f. power 및 전극간 거리를 중심으로-)

  • Kim, C.H.;Shin, Y.S.;Kim, M.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 1990
  • To investigate the influence of r.f. power and electrode distance on the TiN deposition, TiN films were deposited onto STC3, STD11 steel and Si-wafer from gas mixtures of $TiC_4/N_2/H_2$ using the radio frequency plasma assisted chemical vapor deposition. The crystallinity of TiN film could be improved by the increase of r.f. power and the decrease of electrode distance. The TiN coated layer contains chlorine, its content were decreased with increasing r.f. power as well as decreasing electrode distance. And the thickness of deposited TiN was largely affected by r.f. power and electrode distance. The hardness of deposited TiN reached a maximum value of about Hv 2,000.

  • PDF