• Title/Summary/Keyword: Vapor crystal growth

Search Result 328, Processing Time 0.025 seconds

Selective Growth of Nanosphere Assisted Vertical Zinc Oxide Nanowires with Hydrothermal Method

  • Lee, Jin-Su;Nam, Sang-Hun;Yu, Jung-Hun;Yun, Sang-Ho;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.252.2-252.2
    • /
    • 2013
  • ZnO nanostructures have a lot of interest for decades due to its varied applications such as light-emitting devices, power generators, solar cells, and sensing devices etc. To get the high performance of these devices, the factors of nanostructure geometry, spacing, and alignment are important. So, Patterning of vertically- aligned ZnO nanowires are currently attractive. However, many of ZnO nanowire or nanorod fabrication methods are needs high temperature, such vapor phase transport process, metal-organic chemical vapor deposition (MOCVD), metal-organic vapor phase epitaxy, thermal evaporation, pulse laser deposition and thermal chemical vapor deposition. While hydrothermal process has great advantages-low temperature (less than $100^{\circ}C$), simple steps, short time consuming, without catalyst, and relatively ease to control than as mentioned various methods. In this work, we investigate the dependence of ZnO nanowire alignment and morphology on si substrate using of nanosphere template with various precursor concentration and components via hydrothermal process. The brief experimental scheme is as follow. First synthesized ZnO seed solution was spun coated on to cleaned Si substrate, and then annealed $350^{\circ}C$ for 1h in the furnace. Second, 200nm sized close-packed nanospheres were formed on the seed layer-coated substrate by using of gas-liquid-solid interfacial self-assembly method and drying in vaccum desicator for about a day to enhance the adhesion between seed layer and nanospheres. After that, zinc oxide nanowires were synthesized using a low temperature hydrothermal method based on alkali solution. The specimens were immersed upside down in the autoclave bath to prevent some precipitates which formed and covered on the surface. The hydrothermal conditions such as growth temperature, growth time, solution concentration, and additives are variously performed to optimize the morphologies of nanowire. To characterize the crystal structure of seed layer and nanowires, morphology, and optical properties, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and photoluminescence (PL) studies were investigated.

  • PDF

Characterization of Multiphase in $Fe_2O_3$ Thin Film by PECVD

  • Kim, Bum-Jin;Lee, Eun-Tae;Jang, Gun-Eik;Chung, Yong-Sun
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.79-85
    • /
    • 1997
  • Fe$_2$O$_3$ thin films were prepared on $Al_2$O$_3$ substrate by PECVD(Plasma-Enhanced Chemical Vapor Deposition) process. The phase transformation of iron oxide film was determined as the substrate temperature and reduction-oxidation process. $\alpha$-Fe$_2$O$_3$ was stable in deposition temperature ranges of 80~15$0^{\circ}C$. Fe$_3$O$_4$ phase was obtained by the reduction process of $\alpha$-Fe$_2$O$_3$ phase in H$_2$ ambient. Fe$_3$O$_4$ phase was transformed into a ${\gamma}$-Fe$_2$O$_3$ thin film under controlled oxidation conditions at 280~30$0^{\circ}C$.

  • PDF

Nanopatterned Surface Effect on the Epitaxial growth of InGaN/GaN Multi-quantum Well Light Emitting Diode Structure

  • Kim, Keun-Joo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.2
    • /
    • pp.40-43
    • /
    • 2009
  • The authors fabricated a nanopatterned surface on a GaN thin film deposited on a sapphire substrate and used that as an epitaxial wafer on which to grow an InGaN/GaN multi-quantum well structure with metal-organic chemical vapor deposition. The deposited GaN epitaxial surface has a two-dimensional photonic crystal structure with a hexagonal lattice of 230 nm. The grown structure on the nano-surface shows a Raman shift of the transverse optical phonon mode to $569.5\;cm^{-1}$, which implies a compressive stress of 0.5 GPa. However, the regrown thin film without the nano-surface shows a free standing mode of $567.6\;cm^{-1}$, implying no stress. The nanohole surface better preserves the strain energy for pseudo-morphic crystal growth than does a flat plane.

Selective Chemical Vapor Deposition of $\beta$-SiC on Si Substrate Using Hexamethyldisilane/HCl/$H_2$ Gas System

  • Yang, Won-Jae;Kim, Seong-Jin;Chung, Yong-Sun;Auh, Keun-Ho
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.09a
    • /
    • pp.91-95
    • /
    • 1998
  • Selectivity of SiC deposition on a Si substrate partially covered with a masking material was investigated by introducing HCl gas into hexamethyldisilane/H2 gas system during the deposition. the schedule of the precursor and HCl gas flows was modified so that the selectivity of SiC deposition between a Si substrate and a mask material should be improved. It was confirmed that the selectivity of SiC deposition was improved by introducing HCl gas. Also, the pulse gas flow technique was effective to enhance the selectivity.

  • PDF

Dislocation Analysis of CVD Single Crystal Diamond Using Synchrotron White Beam X-Ray Topography (가속기 백색광 X-Ray Topography를 이용한 CVD 단결정 다이아몬드 내부 전위 분석)

  • Yu, Yeong-Jae;Jeong, Seong-Min;Bae, Si-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.3
    • /
    • pp.192-195
    • /
    • 2019
  • Single-crystal diamond obtained by chemical vapor deposition (CVD) exhibits great potential for use in next-generation power devices. Low defect density is required for the use of such power devices in high-power operations; however, plastic deformation and lattice strain increase the dislocation density during diamond growth by CVD. Therefore, characterization of the dislocations in CVD diamond is essential to ensure the growth of high-quality diamond. In this work, we analyze the characteristics of the dislocations in CVD diamond through synchrotron white beam X-ray topography. In estimate, many threading edge dislocations and five mixed dislocations were identified over the whole surface.

The Mechanism of Gold Deposition by Thermal Evaporation

  • Mark C. Barnes;Kim, Doh-Y.;Nong M. Hwang
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.127-142
    • /
    • 2000
  • The charged cluster model states that chemical vapor deposition (CVD) begins with gas phase nucleation of charged clusters followed by cluster deposition on a substrate surface to form a thin film. A two-chambered CVD system, separated by a 1-mm orifice, was used to study gold deposition by thermal evaporation in order to determine if the CCM applies in this case. At a filament temperature of 1523 and 1773 K, the presence of nano-meter sized gold clusters was found to be positive and the cluster size and size distribution increased with increasing temperature. Small clusters were found to be amorphous and they combined with clusters already deposited on a substrate surface to form larger amorphous clusters on the surface. This work revealed that gold thin films deposited on a mica surface are the result of the sticking of 4-10 nm clusters. The topography of these films was similar to those reported previously under similar conditions.

  • PDF

Mass transfer study of double diffusive natural convection in a two-dimensional enclosure during the physical vapor transport of mercurous bromide (Hg2Br2): Part II. Mass transfer (브로민화 수은(I)(Hg2Br2) 물리적 증착공정의 2차원 밀폐공간에서 이중확산 자연 대류에서의 물질전달 연구: Part II. 물질전달)

  • Sung Ho Ha
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.4
    • /
    • pp.145-152
    • /
    • 2023
  • The average Nusselt numbers in the source and crystal region for the variation of thermal Grashof number (Grt) in the range of 2.31 × 104 ≤ Grt ≤ 4.68 × 104 are obtained through numerical simulations. It is shown the average Nusselt number in the crystal region is more than twice as large as the average Nusselt number in the source region. The average Nusselt number in the source region shows an increasing tendency with increasing the thermal Grashof number, Grt, while the average Nusselt number in the crystal region shows a decreasing tendency with increasing thermal Grashof number, Grt. For the variation of the solutal Grashof number (Grs) in the ran ge of 3.28 × 105 ≤ Grs ≤ 4.43 × 105, the average Sherwood number in the source region and crystal region tends to decrease as the solutal Grashof number, Grs increases. The average Sherwood number in the crystal region is about four times greater than the average Sherwood number in the source region.

Synthesis of carbon nanosheets using RF thermal plasma (유도 열플라즈마를 이용한 카본나노시트 합성)

  • Lee, Seung-Yong;Ko, Sang-Min;Koo, Sang-Man;Hwang, Kwang-Taek;Han, Kyu-Sung;Kim, Jin-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.5
    • /
    • pp.207-212
    • /
    • 2014
  • An ultrathin sheet-like carbon nanostructure provides an important model of a two-dimensional graphite structure with strong anisotropy in physical properties. As an easy and cheap route for mass production, RF thermal plasma synthesis of freestanding carbon nanosheet from $CH_4$ (Methane) and $C_3H_8$ (Propane) is presented. Using vapor synthesis process with RF inductively thermal plasma, carbon nanosheets were obtained without catalysts and substrates. The synthesized carbon nanosheets were characterized using transmission electron microscopy (TEM), Raman spectroscopy, X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) analysis. The carbon nanosheets synthesized using methane and propane generally showed 5~6 and 15~16 layers with a wrinkled morphology and size of approximately 100 nm.

Low-temperature phase stability and mechanical properties of $Y-Nb-TZP/Al_2O_3$ compoites ($Y-Nb-TZP/Al_2O_3$ 복합체의 저온 상안정성 및 기계적 특성)

  • 이득용;김대준;조경식;장주웅
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.634-639
    • /
    • 1998
  • $Y_2O_3$ and $Nb_2O_5$ co-doped zirconia composites containing 10~30 vol% $Al_2O_3$ with two different particle sizes were sintered for 5 h at $1550^{\circ}C$ to evaluate low-temperature phase stability of the composite using X-ray diffractometry after heat-treatments for 1000 h at $250^{\circ}C$ in air or for 5 h at $180^{\circ}C$ in 0.3 MPa $H_2O$ vapor pressure. No tetragonal to monoclinic phase transformation during degradation, so called enhanced low-temperature phase stability, was observed for all composites. It is concluded that Nb addition to the composite for the phase stability is more effective than $Al_2O_3$ addition. The optimum combination of strength (670 MPa) and fracture toughness ($7.1{\textrm} {MPam}^{1/2}$) were obtained for the composite containing 20 vol% of $Al_2O_3$ with 2.8 $\mu$m to 0.2 $\mu$m, the flexural strength increases but the fracture toughness decreases.

  • PDF

Improvement of uniformity in chemical vapor deposition of silicon carbide using CFD (탄화규소 화학기상증착 공정에서 CFD를 이용한 균일도 향상 연구)

  • Seo, Jin-Won;Kim, Jun-Woo;Hahn, Yoon-Soo;Choi, Kyoon;Lee, Jong-Heun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.6
    • /
    • pp.242-245
    • /
    • 2014
  • In order to increase the thickness uniformity in chemical vapor depositon of silicon carbide, we have carried out CFD studies for a CVD apparatus having a horizontally-rotated 3-stage susceptor. We deposited silicon carbide films of 3C-SiC phase showing quite uniform thickness between stages but not uniform one in the stage. The cause of this nonuniformity is thought to be originated from the high rotational speed. And the uniformity between stages can be further increased with the $120^{\circ}$ split type nozzles from CFD results. Through the formation of silicon carbide film on graphite substrates we can make oxidation-resistant and dust-free graphite components with high hardness for the semiconductor applications.