• Title/Summary/Keyword: Vane test

Search Result 178, Processing Time 0.022 seconds

GROUND TREATMENT CASE HISTORY OFR SOFT CLAY LAYER AND EVALUATION OF ITS IMPROVEMENT (연약지반처리와 개량효과 평가사례)

  • Lee, Yeong-Nam;Lee, Hyeong-Ju;Sim, Dong-Hyeon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1992.10a
    • /
    • pp.113-120
    • /
    • 1992
  • The construction of container terminal at Brani, Singapore required the improvement of soft clay layer having the thickness of about 6.5m, average moisture content of 79.4%, liquid limit of 90.4%, plastic limit of 21.8%, field vane strength of 10 to 25 KPa, pre-consolidation pressure of 225 to 60 KPa and compression index of 0.4 to 1.0. For the improvement of this layer, Colbon drains of 1.3m spacing in triangular pattern were installed to the bottom of the layer and surcharge of more than 11.25m high sand fill was later applied to the treated area. The settlement and lateral displacement of the ground were measured and the speed of surcharge filling was controlled, based on these readings. The removal of surcharge was determinied using the estimated time for the 90% degree of consolidation under the design pressure of 180KPa. The field and laboratory test results show that the soft clay layer has been improved substantially in its strength and consolidation characteristics: increase in strength of about 50KPa and pre-consolidation pressure and decrease in void ratio and compression index.

  • PDF

Fundamental Studies on the Development of Axial-flow Combine(II) - Development of Mathematical Model of Threshing Process - (축류(軸流) 콤바인의 개발(開發)에 관(關)한 기초(基礎) 연구(硏究)(II) - 탈립과정(脱粒過程)의 수학적(數學的) 모형(模型) 개발(開發) -)

  • Lee, S.K.;Woo, J.K;Kim, S.T.
    • Journal of Biosystems Engineering
    • /
    • v.16 no.1
    • /
    • pp.27-36
    • /
    • 1991
  • This study was carried out getting basic data for developing a new combine which is suitable for the cultivating situation in Korea or Southeast Asia. The relation of the amount of unthreshed grains and the axial displacement of crop in threshing process was attempted to formulate mathematically in a threshing chamber of axial-flow threshing unit. It was found that unthreshed grain is an exponetially-decaying functon of axial displacement of grains based on available data. Threshing experiments were performed to validate the mathematical model by changing various levels of pertinent variables for malting barley. Good correlation were obtained between the theoretical calculation and observed data for various test conditions, such as inclination, vane pitch, concave length, drum speed, feeding velocity, stream weight, moisture content. Therefore the model can be used for general purpose to find the amount of unthreshed grain if the mean rate of occurence of threshing of kernels(${\lambda}_{\tau}$) is properly calibrated considering some other operating conditions and crop conditions which are not involved in this analysis.

  • PDF

Investigation on the Flow Field Upstream of a Centrifugal Pump Impeller

  • Zhang, Yao;Luo, Xianwu;Yi, Yunchi;Zhuang, Baotang;Xu, Hongyuan
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.209-216
    • /
    • 2011
  • The flow upstream of a centrifugal pump impeller has been investigated by both experimental test and numerical simulation. For experimental study, the flow field at four sections in the pump suction is measured by using PIV method. For calculation, the three dimensional turbulent flow for the full flow passage of the pump is simulated based on RANS equations combined with RNG k-$\varepsilon$ turbulence model. From those results, it is noted that at both design lo ad and quarter load condition, the pre-swirl flow whose direction is the same as the impeller rotation exists at all four sections in suction pipe of the pump, and at each section, the pre-swirl velocity becomes obviously larger at higher rotational speed. It is also indicated that at quarter load condition, the low pressure region at suction surface of the vane is large because of the unfavorable flow upstream of the pump impeller.

Effects of Slits and Swirl Vanes on the Main Flow Fields of a Gun-Type Gas Swirl Burner (슬릿과 스월베인이 Gun식 가스버너의 주 유동장에 미치는 영향)

  • Kim, J.K.;Jeong, K.J.
    • Journal of Power System Engineering
    • /
    • v.6 no.4
    • /
    • pp.23-29
    • /
    • 2002
  • This paper is studied to investigate the effect of slits and swirl vanes on the main flow fields of a gun-type gas burner through X-Y plane and Y-Z plane respectively by using X-probe from hot-wire anemometer system. This experiment was carried out with flow rate $450{\ell}/min$ in respective burner models installed in the test section of a subsonic wind tunnel. The burner models with only slits and only swirl vanes respectively were made by modifying original gun-type gas burner. The fast jet flow spurted from slits played a role such as an air-curtain because it encircled rotational flow by swirl vanes and drives mixed main flow to axial direction. As a result, the gun-type gas burner had a wider flow range up to about Y/R=1.5 deviated from slits and maintains a comparatively large velocity in the central part of burner within the range of about X/R=2.5. Therefore, it was very desirable that swirl vanes were installed within slits in gun-type gas burner in order to control the main flow fields effectively.

  • PDF

A cavitation performance prediction method for pumps: Part2-sensitivity and accuracy

  • Long, Yun;Zhang, Yan;Chen, Jianping;Zhu, Rongsheng;Wang, Dezhong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3612-3624
    • /
    • 2021
  • At present, in the case of pump fast optimization, there is a problem of rapid, accurate and effective prediction of cavitation performance. In "A Cavitation Performance Prediction Method for Pumps PART1-Proposal and Feasibility" [1], a new cavitation performance prediction method is proposed, and the feasibility of this method is demonstrated in combination with experiments of a mixed flow pump. However, whether this method is applicable to vane pumps with different specific speeds and whether the prediction results of this method are accurate is still worthy of further study. Combined with the experimental results, the research evaluates the sensitivity and accuracy at different flow rates. For a certain operating condition, the method has better sensitivity to different flow rates. This is suitable for multi-parameter multi-objective optimization of pump impeller. For the test mixed flow pump, the method is more accurate when the area ratios are 13.718% and 13.826%. The cavitation vortex flow is obtained through high-speed camera, and the correlation between cavitation flow structure and cavitation performance is established to provide more scientific support for cavitation performance prediction. The method is not only suitable for cavitation performance prediction of the mixed flow pump, but also can be expanded to cavitation performance prediction of blade type hydraulic machinery, which will solve the problem of rapid prediction of hydraulic machinery cavitation performance.

A Study on the Change of Shear Strength of Coastal Muddy Sediment Due to the Mixing of Oyster shells with different Pyrolysis Temperature and Particle size (굴 패각의 소성온도 및 입경에 따른 연안 점토질 퇴적물의 전단강도 변화에 관한 연구)

  • Woo, Hee-Eun;Jeong, Ilwon;Lee, In-Cheol;Kim, Kyunghoi
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.1
    • /
    • pp.17-23
    • /
    • 2021
  • In order to investigate change of shear strength of coastal muddy sediment by mixing pretreated oyster shells with different pyrolysis temperatures and particle sizes, a vane shear test was carried out. The shear strength of the sediment with oyster shells pyrolyzed at 800℃ was twice higher than that of the control, with a maximum shear strength of ca. 0.2 kPa. The Ca2+ concentration in the pore water was the highest at sediment with oyster shells pyrolyzed at 800℃ with a concentration of ca. 790 mg/L. From the above results, it is concluded that the application of the oyster shells pyrolyzed at 800℃ can affect the increase in shear strength of coastal sediments through the aggregation of clay particles and pozzolanic reactions with sediments.

Piezocone Factors of Korean Clayey Soils (국내 점성토 지반의 피에조콘 계수)

  • 장인성;이선재;정충기;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.15-24
    • /
    • 2001
  • In order to evaluate undrained shear strength of clayey soils using Piezocone Penetration Test (CPTu), piezoncone factor is utilized. Commonly, piezoncone factors determined by empirical basis were preferred, which were established by correlation between measurements of piezocone test and undrained strengths obtained from other shearing tests. However, previous studies on the empirical piezocone factors were site-specific and there have been no systematic investigations on the effect of both engineering characteristics of clayey soils and soil non-homogeneity on the piezocone factor. Accordingly, the direct application of the previous results to Korean clayey soils without verification may be inappropriate. In this study, empirical piezocone factors are evaluated by comparing 46 CPTu results of 10 test sites with undrained shear strength obtained from Field Vane Test (FVT) and laboratory triaxial tests. Their reliabilities are investigated by the comparison with the previous piezocone factors and the deviation of data distribution from the mean values. And the effects of referencing test methods and typical engineering characteristics of clayey soils such as overconsolidation ratio (OCR) and plastic Index (I$_{p}$) are examined. Because piezocone factors obtained for various soil conditions are widely distributed, it is not appropriate to use the mean value as a representative. Instead, it is recommended to apply the piezocone factors with OCR, which is found to be a major factor in deriving piezocone factor. The necessitated piezocone factors are presented.d.

  • PDF

Mechanical Characteristics of Dredged and Reclaimed Ground with Low Plasticity from Western Coastal Site (서해안 저소성 준설매립 지반의 역학적 특성)

  • Jeong, Sang Guk
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.4
    • /
    • pp.97-104
    • /
    • 2015
  • When carrying out design for soft ground improvement before reclamation of dredged soil, it is very important to appropriately evaluate design parameters such as compression index and undrained strength in order to estimate optimum construction cost. In this study, consolidation and strength parameters were estimated by the samples obtained from the similar reclaimed land. Water content and compression index of dredged soil reclaimed by hydraulic fill method were quite decreased in comparison with those of in-situ conditions at Incheon site. Relationships between compression index(Cc) and water content (wn), and between undrained strength (su) and water content (wn) for dredged soil were obtained by field vane test and oedometer test, respectively. Applicability of Schmertmann correction method (compression index) for low plasticity silty soil was discussed according to comparison with designed and measured settlements.

Net Shaping Process to Minimize Cutting amount of Turbocharger Control Plate (터보차저 컨트롤 플레이트의 절삭량 최소화를 위한 정형공정)

  • Yoon, Pil-Hwan;Lee, Seon-Bong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.53-61
    • /
    • 2017
  • Turbocharger is a device for increasing the power of a vehicle engine. The control plate is the main component for fixing the vane of the turbocharger. Now, the control plate is made of austenite steel cutting after the casting process. It has excellent corrosion, heat resistance and mechanical characteristics of material. However, present the process is made by cutting after casting. when cutting is processed after casting, so materials, processing time, and processing energy are lost. Therefore, this study proposes a process to powder compact use of stainless steel Deklak2 and to minimize amount of cutting through net shape process. The mechanical properties of Deklak2 were verified by tensile test, hardness test and relative density measurement, and the governed equation was defined. Also, the curvature radius 1, 2 and the density, affects the shape, were selected as the design parameters, and the best process conditions was proposed through the Taguchi method and the evaluation of SN ratio. And then prototype molds were fabricated and compared with the results of the finite element analysis for the verification, and it was found that the tendency of relative density and dimension was coincided. Therefore, it was found that the amount of cutting can be minimized by only the net shape process after the sintering process and it can be applied to mass production.

Evaluation of CPTU Cone Factor of Silty Soil with Low Plasticity Focusing on Undrained Shear Strength Characteristics (저소성 실트지반의 비배수 전단강도 특성을 고려한 CPTU 콘계수 평가)

  • Kim, Ju-Hyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.1
    • /
    • pp.73-83
    • /
    • 2017
  • Laboratory and in-situ tests were conducted to evaluate the cone factors for the layers with low plasticity containing a lot of silty and sand soils from the west coast (Incheon, Hwaseong and Gunsan areas) and its applicability was evaluated based on these results. The cone factors were evaluated from 19 to 23 based on unconfined compression strengths (qu), from 13 to 13.8 based on simple CU strengths and from 11.6 to 13.1 based on field vane strengths, respectively. The unconfined compression strengths of undisturbed silty soil samples with low plasticity were considerably underestimated due to the change of in-situ residual effective stress during sampling. Half of unconfined compression strength (qu/2) based cone factors of silty soils with low plasticity fluctuated and were approximately 1.8 times higher than simple CU based values of these soils. When evaluating cone factors of these soils, it should be judged overall on the physical properties such as the grain size distribution and soil plasticity and on the fluctuation of the corrected cone resistance and the sleeve friction due to the distribution of sandseam in the ground including pore pressure parameter.