• Title/Summary/Keyword: Vanadium Redox Flow Battery

Search Result 83, Processing Time 0.027 seconds

Development of ESS Based on VRFB-LFPB Hybrid Batteries (VRFB-LFPB 하이브리드 배터리 기반의 ESS 개발에 관한 연구)

  • Cheon, Young Sik;Park, Jin Soo;You, Jinho;Lee, Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.1
    • /
    • pp.61-67
    • /
    • 2018
  • High-power lithium batteries are suitable for equipment with high power output needs, such as for ESS's initial start-up. However, their management cost is increased by the installation of air-conditioning to minimize the risk of explosion due to internal temperature rise and also by a restriction on the number of charge/discharge cycles. High-capacity flow batteries, on the other hand, have many advantages. They can be used for over 20 years due to their low management costs, resulting from no risk of explosion and a high number of charge/discharge cycles. In this paper, we propose an ESS based on hybrid batteries that uses a lithium iron phosphate battery (LiFePO) at the initial startup and a vanadium redox flow battery (VRFB) from the end of the transient period, with a bi-directional PCS to operate two batteries with different DC voltage levels and using an efficient energy management control algorithm.

Energy Efficiency Improvement of Vanadium Redox Flow Battery by Integrating Electrode and Bipolar Plate

  • Kim, Min-Young;Kang, Byeong-Su;Park, Sang-Jun;Lim, Jinsub;Hong, Youngsun;Han, Jong-Hun;Kim, Ho-Sung
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.330-338
    • /
    • 2021
  • An integral electrode-bipolar plate assembly, which is composed of electrode, conductive adhesive film (CAF) and bipolar plate, has been developed and evaluated for application with a vanadium redox flow battery (VRB) to decrease contact resistance between electrode and bipolar plate. The CAF, made of EVA (ethylene-vinyl-acetate) material with carbon black or CNT (Carbon Nano Tube), is applied between the electrode and the bipolar plate to enable an integral assembly by adhesion. In order to evaluate the integral assembly of VRB by adhesive film, the resistivity of integral assembly and the performance of single cell were investigated. Thus, it was verified that the integral assembly is applicable to redox flow battery. Through resistance and contact resistance of bare EVA and CAF films on bipolar plate were changed. Among the adhesive films, CAF film coated with carbon black showed the lowest value in through resistance, and CAF film coated with CNT showed the lowest value in contact resistance, respectively. The efficiency of VRB single cell was improved by applying CAF films coated with carbon black and CNT, resulting in the reduced overvoltage in charging process. Therefore, the energy efficiency of both CAF films, about 84%, were improved than that of blank cell, about 79.5 % under current density at 40 mA cm-2. The energy efficiency of the two cells were similar, but carbon black coated CAF improved the coulomb efficiency and CNT coated CAF improved the voltage efficiency, respectively.

Preparation of the Carbon/PVC Composite Electrode and application to All-Vanadium Redox Flow Battery (Carbon/PVC 복합전극의 제조 및 전 바나듐계 레독스-흐름전지에의 응용)

  • 유철휘;장인영;정현철;김종철;강안수
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2002.11a
    • /
    • pp.279-284
    • /
    • 2002
  • All-vanadium redox flow battery(VRFB) has been studied actively as one of the most promising electrochemical energy storage systems for a wide range of applications such as electric vehicles, photovoltaic arrays, and excess power generated by electric power plants at night time. CPCS has been shown to have the characteristics as an excellent current collector for VRFB and electrochemical properties of specific resistivity 0.31 $\Omega$cm, which were composed of G-1028 80 wt%, PVC 10 wt%, DBP 5 wt% and FS 5 wt%. Energy efficiencies of VRFB with the CPCE and the existing electrode assembly were 84.14 % and 77.24 % respectively, in charge/discharge experiments at constant current of 200 mA, and the CPCE was confirmed to be suitable as the electrode of VRFB.

  • PDF

Characterization of Commercial Membranes for Non-aqueous Vanadium Redox Flow Battery (비수계 바나듐 레독스 흐름 전지를 위한 상용 멤브레인의 특성분석)

  • Sung, Ki-Won;Shin, Sung-Hee;Moon, Seung-Hyeon
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.615-621
    • /
    • 2013
  • Membrane characterization methods for aqueous redox flow batteries aqueous RFBs were modified for non-aqueous RFBs. The modified characterization methods, such as ion exchange capacity, transport number, permeability and single cell test, were carried out to evaluate commercial membranes in non-aqueous electrolyte. It was found that columbic efficiency and energy efficiency in a single cell test were dependent on the ion selectivity of commercial anion exchange membranes. Neosepta AHA anion exchange membrane showed the anion transport number of 0.81, which is a relatively low ion selectivity in non-aqueous electrolyte, however, exhibited 92% of coulombic efficiency and 86% of energy efficiency in a single cell test. It was also found that a porous membrane without ion selectivity is suitable for a non-aqueous redox flow battery at a high current density.

A Study on The Effects of Three Different Carbon Catalysts on Performance of Vanadium Redox Flow Battery (세가지 다른 형태의 탄소촉매 적용에 따른 바나듐레독스흐름전지 성능 변화에 관한 연구)

  • Chu, Cheounho;Jeong, Sanghyun;Jeong, Jooyoung;Chun, Seung-Kyu;Lee, Jinwoo;Kwon, Yongchai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.2
    • /
    • pp.170-178
    • /
    • 2015
  • In this study, we carry out a study on how to improve performance of vanadium redox flow battery (VRFB) through promoting reaction rate of rate determining vanadium reaction ($[VO]^{2+}/[VO_2]^+$). In order to do that, three different carbons like Vulcan (XC-72), CMK3 and MSU-F-C are adopted as the catalysts, while their catalytic activity and reaction reversibility are evaluated using half-cell tests. Their topological images are also measured by TEM. For estimation of the VRFB performance, multiple charge-discharge curves of VRFBs including the catalysts are measured by single cell tests. As a result of that, MSU-F-C shows relatively excellent catalytic activity and reaction reversibility as well as large surface area compared to those of Vulcan (XC-72) and CMK3. Also, in terms of the performance of VRFBs including the catalysts, VRFB including MSU-F-C indicates (i) low charging/discharging overpotentials and low internal resistance, (ii) high charge/discharge capacities and (iii) high energy efficiency. These VRFB performance data are well agreed with results on catalytic activity and reaction reversibility. The reason that MSU-F-C induces superior VRFB performances is attributed to (i) its large surface area and (ii) its hydrophilic surface functional groups that mainly consist of hydroxyl bonds that are supposed to play active surface site role for facilitaing $[VO]^{2+}/[VO_2]^+$ redox reaction. Based on the above results, it is found that adoption of MSU-F-C as catalyst for VRFB results in improvement in VRFB performance by promoting the languid $[VO]^{2+}/[VO_2]^+$ redox reaction.

A Study on the Configuration of BOP and Implementation of BMS Function for VRFB (VRFB를 위한 BOP 구성 및 BMS 기능구현에 관한 연구)

  • Choi, Jung-Sik;Oh, Seung-Yeol;Chung, Dong-Hwa;Park, Byung-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.74-83
    • /
    • 2014
  • This paper proposes a study on the configuration of balancing of plant(BOP) and implementation of battery management system(BMS) functions for vanadium redox flow battery(VRFB) and propose a method consists of sensor and required design specifications BOP system configuration. And it proposes an method of the functions implementation and control algorithm of the BMS for flow battery. Functions of BMS include temperature control, the charge and discharge control, flow control, level control, state of charge(SOC) estimation and a battery protection through the sensor signal of BOP. Functions of BMS is implemented by the sensor signal, so it is recognized as a very important factor measurement accuracy of the data. Therefore, measuring a mechanical signal(flow rate, temperature, level) through the BOP test model, and the measuring an electrical signal(cell voltage, stack voltage and stack current) through the VRFB charge-discharge system and analyzes the precision of data in this paper. Also it shows a good charge-discharge test results by the SOC estimation algorithm of VRFB. Proposed BOP configuration and BMS functions implementation can be used as a reference indicator for VRFB system design.

Surface Treatment with CO2 to Improve Electrochemical Characteristics of Carbon Felt Electrode for VRFB

  • Yechan Park;Sunhoe Kim
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.131-138
    • /
    • 2023
  • The carbon felt is usually hired as electrodes for vanadium redox flow battery (VRFB). In the study, surface modification of carbon felt under CO2 atmosphere with variables of operating various temperature ranges between 700℃ and 900℃. The qualitative and quantitative analysis were carried out such as scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) to observe degree of surface modification. Result of XPS analysis confirmed increase of carbon and oxidation functional group on the surface with increase of temperature. SEM image was discovered similar phenomena. Electrochemical characteristics such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) revealed the improved electrode performance with increase of temperature. However, the electrochemical performance under treatments temperature of 900℃ was less than that of under treatment temperature of 850℃ due to weight loss at the treatment temperature of 900℃. From the CV and EIS results, the best electrochemical characteristics was at the temperature of 850℃. That of at the temperature of 900℃ was decreased due to weight loss. The energy efficiencies (EE) obtained from full cell test were 69.37, 80.76, 82.45, and 75.47%, at the temperature of 700, 800, 850, and 900℃, respectively.

Performance Evaluation of Aqueous Organic Redox Flow Battery Using Methylene Blue and Vanadium Redox Couple (메틸렌블루와 바나듐을 활물질로 활용한 수계 유기 레독스 흐름 전지의 성능 평가)

  • Lee, Wonmi;Kwon, Yongchai
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.890-894
    • /
    • 2018
  • In this study, methylene blue which is one of dye materials was introduced as active material for aqueous redox flow battery. The redox potential of methylene blue was shifted to negative direction as pH increased. The full-cell performance was evaluated by using methylene blue as the negative active material and vanadium as the positive active material with acid supporting electrolytes. The cell voltage of methylene $blue/V^{4+}$ is very low (0.45 V). In addition, the maximum solubility of methylene blue in water is only 0.12 M. Therefore, the cell test was performed with very low concentration (0.0015 M methylene blue, $0.15M\;V^{4+}$) at first time. Cut-off voltage range was 0 to 0.8 V and $1mA{\cdot}cm^{-2}$ current density was adopted during cycling. As a result, current efficiency (CE) was 99.67%, voltage efficiency (VE), 88.83% and energy efficiency (EE) was 85.87% and discharge capacity was ($0.0500Ah{\cdot}L^{-1}$) at 4 cycle. In addition, the cell test was performed with increased concentration (0.1 M methylene blue, $0.15M\;V^{4+}$) with $10mA{\cdot}cm^{-2}$ current density, leading to higher discharge capacity ($3.8122Ah{\cdot}L^{-1}$) with similar efficiency (CE=99%, VE=85%, EE=85% at 4 cycle).