• 제목/요약/키워드: Van der Waals Interaction

검색결과 67건 처리시간 0.028초

다중 탄성 빔 모델을 사용한 다중벽 탄소 나노튜브의 자유 진동에 미치는 수정된 반데르발스 상호작용에 대한 연구 (The Study of Modified van der Waals Interactions on Free Vibration of Multi-walled Carbon Nanotubes Using Multi-elastic Beam Model)

  • 윤주일;강상욱
    • 한국소음진동공학회논문집
    • /
    • 제20권4호
    • /
    • pp.390-396
    • /
    • 2010
  • Resonant frequencies and the associated vibrational modes of multiwall carbon nanotubes are studied in this paper. The analysis is based on a multiple-elastic beam model, considering intertube radial displacements and the related internal degrees of freedom. Especially, van der Waals interaction is modified considering both all interaction between each layers in multi-wall carbon nanotubes and curvature effect. The results show that modified van der Waals interaction could significantly affect the natural frequencies of multi-walled carbon nanotubes. In particular, non-coaxial intertube resonance will be excited at the higher resonant frequencies of multiwall carbon nanotubes.

실린더 형태의 나노와이어와 표면 사이의 응착력 평가를 위한 분자동역학 시뮬레이션 연구 (Investigation of Adhesion force between Cylindrical Nanowire and Flat Surface through Molecular Dynamics Simulation)

  • 김현준
    • Tribology and Lubricants
    • /
    • 제31권6호
    • /
    • pp.264-271
    • /
    • 2015
  • Adhesion force of nanomaterials such as nanoparticle, nanowire, and nanorods should be significantly considered for its mechanical applications. However, examination of the adhesion force is limited since it is technically challenging to carry out experiments with such small objects. Therefore, in this work, molecular dynamics simulation (MDS) was conducted to determine the adhesion force between a nanowire and a flat surface, which could not be readily assessed through experiments. The adhesion force of a cylindrical-shaped nanowire was assessed by performing MDS and applying an equation of Van der Waals interaction. Simulation was conducted in two steps: indentation of a spherical tip on the flat surface and indentation of a cylinder on the flat surface, because the purpose of the simulation was comparing the results of the simulation and calculation of the Van der Waals interaction equation. From the simulation, Hamaker constant used for the equation of Van der Waals interaction was determined to be 2.93 °ø 10?18 J. Using this constant, the adhesion force of the nanowire on the flat surface was readily estimated by calculating Van der Waals equation to be approximately 65~89 nN with respect to the diameter of the nanowire. Moreover, the adhesion force of the nanowire was determined to be 52~77 nN from the simulation It was observed that there was a slight discrepancy (approximately 15~25%) between the results of the simulation and the theoretical calculation. Thus, it was confirmed that the calculation of Van der Waals interaction could be utilized to assess the adhesion force of the nanowire.

Configuration Interaction Theory and van der Waals Predissociation

  • 이천우
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권9호
    • /
    • pp.850-858
    • /
    • 1995
  • Golden-rule like formulas have been used without theoretical basis to calculate the resonance lifetimes and final state distributions in the predissociation of van der Waals molecules. Here we present their theoretical basis by extending Fano's configuration interaction theory. Such extensions were independently done by Farnonux [Phys. Rev. 1985, 25, 287] but his work, unfortunately, was not well known outside some small group of people in the field of Auger spectroscopy. Since my extension is easier to understand than his, it is presented here. Theoretical basis of Golden rule like formulas used in the predissociation of van der Waals molecules was obtained by using such extensions. Factors responsible for several aspects of predissociation dynamics, such as variations of dynamics as functions of resonance lifetimes, or variations in shapes of final quantum state distributions of photofragments around resonances, were identified. Parameters, or dynamical information that could be obtained from the measurement of partial cross section spectra were accordingly determined. The theory was applied to the vibrational predissociation of triatomic van der Waals molecules and its result was compared with those calculated by close-coupling method. An example where Golden-rule like expression fails and branching ratios vary greatly around a resonance was considered.

Estimation of Surface Forces in Micro Rough Surface Contacts

  • Kim, Doo-In;Ahn, Hyo-Sok;Choi, Dong-Hoon
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.63-64
    • /
    • 2002
  • In a micro-scale contact, surface forces such as capillary force and van der Waals Interaction significantly Influence the contact between asperities of rough surfaces. Little is, however, known about the variation of these surface forces as a function of chemical property of the surface (hydrophilicity), relative humidity and deformation of asperities In the real area of contact. A better understanding of these surface forces is of great necessity in order to find an optimal solution for reducing friction and adhesion of micro surfaces. We proposed an effective method to analyze capillary and van der Waals forces In nano-scale contact. In this method, Winklerian foundation model was employed to analyze the contact of rough surfaces that were obtained from atomic force microscopy (AFM) height Images. Self-mated contact of diamond-like-carbon (DLC) coatings was analyzed, as an example, by the proposed model. It was shown that the capillary force was significantly influenced by relative humidify and wet angle of the DLC surface. The deformation of asperities to a critical magnitude by external loading led to a considerable increase of both capillary and van der Waals forces.

  • PDF

거친 표면간의 미세 접촉에서의 표면력 해석 (Analysis of Surface Forces in Micro Contacts between Rough Surfaces)

  • 김두인;안효석;최동훈
    • 대한기계학회논문집A
    • /
    • 제26권10호
    • /
    • pp.2180-2186
    • /
    • 2002
  • In a micro-scale contact, capillary force and van der Waals interaction significantly influence the contact between asperities of rough surfaces. Little is, however, known about the variation of these surface forces as a function of chemical property of the surface (wet angle), relative humidity and deformation of asperities in the real area of contact. A better understanding of these surface forces is of great necessity in order to find a solution for reducing friction and adhesion of micro surfaces. The objective of this study is to investigate the surface forces in micro-scale rough surface contact. We proposed an effective method to analyze capillary and van der Waals forces in micro-scale contact. In this method, Winkler spring model was employed to analyze the contact of rough surfaces that were obtained from atomic force microscopy (AFM) height images. Self-mated contact of DLC(diamond like carbon) coatings was analyzed, as an example, by the proposed model. It was shown that the capillary force was significantly influenced by relative humidity and wet angle of the DLC surface. The deformation of asperities to a critical magnitude by external loading led to a considerable increase of both capillary and van der Waals forces.

Silicene on Other Two-dimensional Materials: Formation of Heterostructure

  • Kim, Jung Hwa;Lee, Zonghoon
    • Applied Microscopy
    • /
    • 제44권4호
    • /
    • pp.123-132
    • /
    • 2014
  • Silicene is one of the most interesting two-dimensional materials, because of not only the extraordinary properties similar to graphene, but also easy compatibility with existing silicon-based devices. However, non-existing graphitic-like structure on silicon and unstable free-standing silicene structure leads to difficulty in commercialization of this material. Therefore, substrates are essential for silicene, which affects various properties of silicene and supporting unstable structure. For maintaining outstanding properties of silicene, van der Waals bonding between silicene and substrate is essential because strong interaction, such as silicene with metal, breaks the band structure of silicene. Therefore, we review the stability of silicene on other two-dimensional materials for van der Waals bonding. In addition, the properties of silicene are reviewed for silicene-based heterostructure.

STM과 STS를 이용한 그래핀 위에서의 플러렌 흡착 구조에 관한 단분자 연구

  • 정민복;신형준
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.164.1-164.1
    • /
    • 2014
  • 플러렌은 구조적인 특성때문에 흡착된 표면의 재료적 성질과 구조 그리고 흡착 배향에 따라 전자구조가 민감하게 변한다. 그래핀 위의 플러렌은 약한 van der Waals interaction으로 인해 매우 균일한 패턴으로 자가조립하여 decoupling 되는 것으로 알려져 있지만 [1,2] 그래핀을 지지하는 substrate의 종류에 따라 플러렌의 전자 구조에 영향을 미치는 것으로 보인다 [3]. 우리는 substrate에 의한 효과를 관찰하기 위헤 Cu(111)위에 그래핀과 플러렌을 순차적으로 성장시켜 STM을 이용하여 플러렌의 흡착구조 및 전자 구조를 연구하였다. 플러렌과 그래핀 사이의 van der Waals interaction과 이웃한 플러렌 분자들 사이의 intermolecular interaction 세기에 따라 흡착 구조가 크게 영향을 받음을 알 수 있었다.

  • PDF

Magnetic Properties of Ni/BN/Co Trilayer Structure: A First Principles Study

  • Hashmi, Arqum;Hong, Jisang
    • Journal of Magnetics
    • /
    • 제20권3호
    • /
    • pp.201-206
    • /
    • 2015
  • Using the Vienna ab initio simulation package (VASP) incorporating both semiempirical and nonlocal van der Waals interaction, the structural, adsorption, and magnetic properties of Ni/BN/Co systems were investigated. We proposed that the relative spin direction of Ni and Co magnets can be easily tuned, because the total energy difference between ferromagnetic (FM) and antiferromagnetic (AFM) states is small. Despite this feature, very interestingly, both Ni and Co layers manifest half-metallic state, whereas the spacer BN layer becomes weak metal for one monolayer (ML) thickness and an insulating barrier for two ML thicknesses. The half-metallic behavior of the magnetic layers seems very robust, because it is independent of the magnetic coupling between Ni and Co. This finding indicates that the Ni/BN/Co system can be used as a potential candidate for tunneling magnetoresistance system.

The Interaction of HIV-1 Inhibitor 3,3',3",3‴-Ethylenetetrakis-4-Hydroxycoumarin with Bovine Serum Albumin at Different pH

  • Dong, Sheying;Yu, Zhuqing;Li, Zhiqin;Huang, Tinglin
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권6호
    • /
    • pp.2063-2069
    • /
    • 2011
  • We studied the interaction of 3,3',3'',3'''-ethylenetetrakis-4-hydroxycoumarin (EHC) with bovine serum albumin (BSA) in acetate buffer and phosphate buffer with different pH values by UV-vis absorption spectrometry and fluorescence spectrometry respectively. It was found that the pH values of the buffer solutions had an effect on the interaction process. In acetate buffer of pH 4.70, the carbonyl groups in EHC bound to the amino groups in BSA by means of hydrogen bond and van der Waals force, which made the extent of peptide chain in BSA changed. By contrast, in phosphate buffer of pH 7.40, hydrophobic force played a major role in the interaction between EHC and BSA, while the hydrogen bond and van der Waals force were also involved in the interaction. The results of spectrometry indicated that BSA could enhance the fluorescence intensity of EHC by forming a 1:1 EHC-BSA fluorescent complex through static mechanism at pH 4.70 and 7.40 respectively. Furthermore, EHC bound on site 1 in BSA.

Amberlite XAD 수지에 대한 일치환 할로 페놀들의 흡착거동에 관한 연구 (Adsorption Behavior of Monosubstituted-Halophenols by Amberlite XAD Resins)

  • 이택혁;이대운
    • 대한화학회지
    • /
    • 제34권3호
    • /
    • pp.267-279
    • /
    • 1990
  • Amberlite XAD-2 및 XAD-7 수지에 대한 페놀과 그 할로겐 일치환체들에 대한 흡착성을 분포계수를 측정하여 조사하였다. XAD 수지에 대한 페놀의 흡착은 Langmuir 등온흡착으로 설명될 수 있었으며, 이 때의 흡착은 분자의 크기에 따르는, 즉 분산상호작용에 기인하는 전형적인 물리흡착임을 알았다. 고분자 합성수지에 대한 페놀류의 흡착에너지는 Lennard-Jones potential로 계산하였다. 이 때 고분자 수지의 반지름은 수지의 최소기본단위의 van der Waals 부피로부터 계산하였으며 페놀류의 분자 반지름도 같은 방법으로 구하였다. 페놀유도체들의 흡착성은 각 수지에 대한 시료의 Stacking factor (F)-고분자 수지와 페놀류사이의 van der Waals 부피로부터 구한 평형거리의 보정인자-로부터 흡착에너지를 구하고 뱃치법으로 측정한 흡착엔탈피값과 비교함으로써 설명할 수 있었다. 각 수지에 대한 페놀이온의 흡착엔탈피는 쌍극자 작용력이나 하전-쌍극자 상호작용보다 분산상호작용이 주 요인인 것으로 나타났다.

  • PDF