• Title/Summary/Keyword: Van der Waals Forces

Search Result 75, Processing Time 0.02 seconds

Development of Virtual Science Experience Space(VSES) using Haptic Device (역감 제시 장치를 이용한 가상 과학 체험 공간 개발)

  • 김호정;류제하
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.11
    • /
    • pp.1044-1053
    • /
    • 2003
  • A virtual science experience space(VSES) using virtual reality technology including haptic device is proposed to overcome limits which the existing science education has and to improve the effect of it. Four example scientific worlds such as Micro World, Friction World, Electromechanical World and Macro World are demonstrated by the developed VSES. Van der Waals forces in Micro World and Stick-Slip friction in Friction World, the principle of induction motor and power generator in Electromechanical World and Coriolis acceleration that is brought about by relative motion on the rotating coordinate are modeled mathematically based on physical principles. Emulation methods for haptic interface are suggested. The proposed VSES consists of haptic device, HMD or Crystal Eyes and a digital computer with stereoscopic graphics and GUI. The proposed system is believed to increase the realism and immersion for user.

The Structure of 1-[2-[[(4-chlorophenyl)-methyl]thio]-2-(2, 4-dichlorphenyl)ethyl]-1H imidazole (Sulconazole) nitrate, C18H16Cl3N3O3S

  • Shin, Hyun-So;Song, Hyun;Cho, Sung-Il;Pakr, Keun-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.1
    • /
    • pp.14-18
    • /
    • 1997
  • Sulconazole nitrate, C18H16Cl3N3O3S, crystallizes in monoclinic, space group C2/c, with a=14.401(1), b=8.051(1), c=34.861(2) Å, β=95.9(1)°, g=0.58 mm-1, Dc=1.523 g/cm3, Dm=1.522 g/cm3, F(000)=1888.0, and z=8. Intensities for 2460 unique reflections were measured on a CAD4 diffractometer with graphited-monochromated Mo-Kα radiation. The structure was solved by direct method and refined by full matrix least squares to a final R=0.071 for 2182 reflections (Io > 2σIo). The bond lengths and angles are comparable with the values found in the analogues imidazole derivatives. The 2,4-dichlorophenyl ring(A) and the p-chlorophenyl ring(B) are almost planar with different heights [dihedral angle 17.3°] while the imidazole ring(C) is nearly perpendicular to the two phenyl rings[dihedral angles about the two rings A, B are 110.8° and 96.1° respectively]. In order to understand the overall conformation we calculated the selected distances (l1, l2, l3) among the center of the three rings and considered the imaginary plan D[C(7), C(9) and C(16)]. The two polar group S(8) and N(19) do not have gauche conformation and l2 value (4.47 Å) is shorter than the other imidazole derivatives. One -NO3 group are hydrogen bonded the two neighbored sulconazole molecules. The molecular crystal packing is also formed by two hydrogen bondings and van der Waals forces.

Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering

  • Lee, Jin Hyun
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.235-248
    • /
    • 2018
  • Background: Injectable hydrogels have been extensively researched for the use as scaffolds or as carriers of therapeutic agents such as drugs, cells, proteins, and bioactive molecules in the treatment of diseases and cancers and the repair and regeneration of tissues. It is because they have the injectability with minimal invasiveness and usability for irregularly shaped sites, in addition to typical advantages of conventional hydrogels such as biocompatibility, permeability to oxygen and nutrient, properties similar to the characteristics of the native extracellular matrix, and porous structure allowing therapeutic agents to be loaded. Main body: In this article, recent studies of injectable hydrogel systems applicable for therapeutic agent delivery, disease/cancer therapy, and tissue engineering have reviewed in terms of the various factors physically and chemically contributing to sol-gel transition via which gels have been formed. The various factors are as follows: several different non-covalent interactions resulting in physical crosslinking (the electrostatic interactions (e.g., the ionic and hydrogen bonds), hydrophobic interactions, ${\pi}$-interactions, and van der Waals forces), in-situ chemical reactions inducing chemical crosslinking (the Diels Alder click reactions, Michael reactions, Schiff base reactions, or enzyme-or photo-mediated reactions), and external stimuli (temperatures, pHs, lights, electric/magnetic fields, ultrasounds, or biomolecular species (e.g., enzyme)). Finally, their applications with accompanying therapeutic agents and notable properties used were reviewed as well. Conclusion: Injectable hydrogels, of which network morphology and properties could be tuned, have shown to control the load and release of therapeutic agents, consequently producing significant therapeutic efficacy. Accordingly, they are believed to be successful and promising biomaterials as scaffolds and carriers of therapeutic agents for disease and cancer therapy and tissue engineering.

Two Polymorphs of Structures of $\alpha,\alpha$-Trehalose Octaacetate Monohydrate

  • Park, Young-Ja;Shin, Jung-Mi
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.2
    • /
    • pp.200-206
    • /
    • 1993
  • Structures of two polymorphs of ${\alpha},{\alpha}$-trehalose octaacetate monohydrate, $C_{28}H_{38}O_{19}\;{\cdot}\;H_2O$, have been studied by X-ray diffraction method. ${\alpha},{\alpha}$-trehalose (${\alpha}$-D-glucopyranosyl ${\alpha}$-D-glucopyranoside) is a nonreducing disaccharide. The polymorph I belongs to the monoclinic $P2_1$, and has unit cell parameters of a=10.725(l), b=15.110(4), c=11.199(5) ${\AA}$, ${\beta}=108.16(2)^{\circ}$ and Z=2. The polymorph II is orthorhombic $P2_12_12_1$, with a=13.684(4), b=15.802(4), c=17.990(9) ${\AA}$ and Z=4. The final R and R$_w$ values for monoclinic polymorph I are 0.043 and 0.048 and for orthorhombic polymorph II are 0.116 and 0.118, respectively. Those R values of polymorph II are high because the large thermal motions of acetyl groups and the poor quality of the crystal. The molecular conformations in the two polymorphs are similar. Both D-glucopyranosyl rings have chair $^4C_1$ conformations and atoms of glycosidic chain ${\alpha}(1{\rightarrow}1)$ linkage are coplanar. The primary acetate groups of the pyranose residues assume both gauche-trans conformations. The molecules of two polymorphs have pseudo-C$_2$ symmetry at glycosidic O(1) atom. The bond lengths and angles are normal compared with those in other acetylated sugar compounds. The molecules in the monoclinic crystal are held by the hydrogen bonds with the water molecules and by van der Waals forces.

The Effect of Fixing Agents and Softner on Sericin Fixation of Trimethylolmelamine (트리메틸올멜라민의 세리신 정착에 있어 정착제와 유연제의 영향)

  • Park, Geon-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.93-98
    • /
    • 2017
  • The fixing behaviors of raw silk yarns treated with melamine and formaldehyde at a molar ratio of 1:3 for trimethylolmelamine were investigated. Sericin was fixed during the fixing process, but a part of sericin I was removed simultaneously by hot water. The weight losses by fixing and the degumming losses by degumming greatly decreased with increasing concentrations of melamine and formaldehyde. The silk yarns fixed with 0.011 M melamine and 0.033M formaldehyde were significantly degummed due to the insufficient fixation of sericin and the alkaline hydrolysis of sericin by sodium carbonate during the degumming process. On the other hand, the silk yarns fixed with 0.055M melamine and 0.165M formaldehyde were degummed slightly (the degumming losses of 3-8%) due to the strong fixation of sericin, which might result from the many cross-linkages between the sericin I molecules, which were formed by trimethylolmelamine. Those fixed with the fixing solution containing 15% owf softener showed the lowest weight and degumming losses because under the condition of 15% owf softener, the cation of the softener can effectively form ionic bonds with the negatively charged side chain of aspartic acid in sericin. In addition, van der Waals' forces may be also formed between the hydrophobic tail of the softener and the hydrophobic region of sericin, which may help inhibit the removal of sericin I.