• Title/Summary/Keyword: Value-at-Risk(VaR)

Search Result 65, Processing Time 0.02 seconds

VaR(Value at Risk) for Korean Financial Time Series

  • Hwang, S.Y.;Park, J.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.2
    • /
    • pp.283-288
    • /
    • 2005
  • Value at Risk(VaR) has been proven useful in finance literature as a tool of risk management(cf. Jorion(2001)). This article is concerned with introducing VaR to various Korean financial time series. Five daily data sets with sample period ranging from 2000 and 2004 such as KOSPI, KOSPI 200, KOSDAQ, KOSDAQ 50 and won-dollar exchange rate are analyzed using GARCH modeling and in turn VaR is obtained for each data.

  • PDF

Risk Measures and the Effectiveness of Value-at-Risk Hedging (위험측정치와 VaR헤지의 유효성)

  • Moon, Chang-Kuen;Kim, Chun-Ho
    • International Commerce and Information Review
    • /
    • v.9 no.2
    • /
    • pp.65-86
    • /
    • 2007
  • This paper reviews the properties and application methods of widely used types of risk measures, identifies the rationale and business-side effects of hedging, derives the theoretical formula of optimal hedging ratio, and analyzes the various functional aspects of VaR(Value-at-risk) as a risk measure and a hedging tool. Especially this paper focuses on the characteristics of VaR compared with other risk measures in terms of their own principal determinants and identifies its stronger aspects in the dimension of hedging strategy tools. As well, this paper provides the detailed processes deriving the optimal hedge ratios based on the distributional parameters and risk factors. In addition, this paper presents the detailed and substantial processes of estimating the minimum variance hedge ratio and minimum-VaR hedge ratio using the actual data and shows that the minimum variance hedge ratio proves helpful for many cases although it is not appropriate for the non-linear portfolio including the option contracts. We demonstrate the trade-off relationship between the minimum variance hedge strategy and the minimum-VaR hedge strategy in their hedging costs and performances through calculation of the respective VaRs and variances of unhedged and hedged portfolios and the optimal hedge ratio and hedging effectiveness values for the given long position in US Dollar with the short position in Euro.

  • PDF

Comparison of Dimension Reduction Methods for Time Series Factor Analysis: A Case Study (Value at Risk의 사후검증을 통한 다변량 시계열자료의 차원축소 방법의 비교: 사례분석)

  • Lee, Dae-Su;Song, Seong-Joo
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.4
    • /
    • pp.597-607
    • /
    • 2011
  • Value at Risk(VaR) is being widely used as a simple tool for measuring financial risk. Although VaR has a few weak points, it is used as a basic risk measure due to its simplicity and easiness of understanding. However, it becomes very difficult to estimate the volatility of the portfolio (essential to compute its VaR) when the number of assets in the portfolio is large. In this case, we can consider the application of a dimension reduction technique; however, the ordinary factor analysis cannot be applied directly to financial data due to autocorrelation. In this paper, we suggest a dimension reduction method that uses the time-series factor analysis and DCC(Dynamic Conditional Correlation) GARCH model. We also compare the method using time-series factor analysis with the existing method using ordinary factor analysis by backtesting the VaR of real data from the Korean stock market.

Value at Risk Forecasting Based on Quantile Regression for GARCH Models

  • Lee, Sang-Yeol;Noh, Jung-Sik
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.4
    • /
    • pp.669-681
    • /
    • 2010
  • Value-at-Risk(VaR) is an important part of risk management in the financial industry. This paper present a VaR forecasting for financial time series based on the quantile regression for GARCH models recently developed by Lee and Noh (2009). The proposed VaR forecasting features the direct conditional quantile estimation for GARCH models that is well connected with the model parameters. Empirical performance is measured by several backtesting procedures, and is reported in comparison with existing methods using sample quantiles.

Can the Skewed Student-t Distribution Assumption Provide Accurate Estimates of Value-at-Risk?

  • Kang, Sang-Hoon;Yoon, Seong-Min
    • The Korean Journal of Financial Management
    • /
    • v.24 no.3
    • /
    • pp.153-186
    • /
    • 2007
  • It is well known that the distributional properties of financial asset returns exhibit fatter-tails and skewer-mean than the assumption of normal distribution. The correct assumption of return distribution might improve the estimated performance of the Value-at-Risk(VaR) models in financial markets. In this paper, we estimate and compare the VaR performance using the RiskMetrics, GARCH and FIGARCH models based on the normal and skewed-Student-t distributions in two daily returns of the Korean Composite Stock Index(KOSPI) and Korean Won-US Dollar(KRW-USD) exchange rate. We also perform the expected shortfall to assess the size of expected loss in terms of the estimation of the empirical failure rate. From the results of empirical VaR analysis, it is found that the presence of long memory in the volatility of sample returns is not an important in estimating an accurate VaR performance. However, it is more important to consider a model with skewed-Student-t distribution innovation in determining better VaR. In short, the appropriate assumption of return distribution provides more accurate VaR models for the portfolio managers and investors.

  • PDF

Estimation of VaR Using Extreme Losses, and Back-Testing: Case Study (극단 손실값들을 이용한 VaR의 추정과 사후검정: 사례분석)

  • Seo, Sung-Hyo;Kim, Sung-Gon
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.2
    • /
    • pp.219-234
    • /
    • 2010
  • In index investing according to KOSPI, we estimate Value at Risk(VaR) from the extreme losses of the daily returns which are obtained from KOSPI. To this end, we apply Block Maxima(BM) model which is one of the useful models in the extreme value theory. We also estimate the extremal index to consider the dependency in the occurrence of extreme losses. From the back-testing based on the failure rate method, we can see that the model is adaptable for the VaR estimation. We also compare this model with the GARCH model which is commonly used for the VaR estimation. Back-testing says that there is no meaningful difference between the two models if we assume that the conditional returns follow the t-distribution. However, the estimated VaR based on GARCH model is sensitive to the extreme losses occurred near the epoch of estimation, while that on BM model is not. Thus, estimating the VaR based on GARCH model is preferred for the short-term prediction. However, for the long-term prediction, BM model is better.

Performance analysis of EVT-GARCH-Copula models for estimating portfolio Value at Risk (포트폴리오 VaR 측정을 위한 EVT-GARCH-코퓰러 모형의 성과분석)

  • Lee, Sang Hun;Yeo, Sung Chil
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.4
    • /
    • pp.753-771
    • /
    • 2016
  • Value at Risk (VaR) is widely used as an important tool for risk management of financial institutions. In this paper we discuss estimation and back testing for VaR of the portfolio composed of KOSPI, Dow Jones, Shanghai, Nikkei indexes. The copula functions are adopted to construct the multivariate distributions of portfolio components from marginal distributions that combine extreme value theory and GARCH models. Volatility models with t distribution of the error terms using Gaussian, t, Clayton and Frank copula functions are shown to be more appropriate than the other models, in particular the model using the Frank copula is shown to be the best.

Value at Risk calculation using sparse vine copula models (성근 바인 코풀라 모형을 이용한 고차원 금융 자료의 VaR 추정)

  • An, Kwangjoon;Baek, Changryong
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.6
    • /
    • pp.875-887
    • /
    • 2021
  • Value at Risk (VaR) is the most popular measure for market risk. In this paper, we consider the VaR estimation of portfolio consisting of a variety of assets based on multivariate copula model known as vine copula. In particular, sparse vine copula which penalizes too many parameters is considered. We show in the simulation study that sparsity indeed improves out-of-sample forecasting of VaR. Empirical analysis on 60 KOSPI stocks during the last 5 years also demonstrates that sparse vine copula outperforms regular copula model.

Value-at-Risk Models in Crude Oil Markets (원유시장 분석을 위한 VaR 모형)

  • Kang, Sang Hoon;Yoon, Seong Min
    • Environmental and Resource Economics Review
    • /
    • v.16 no.4
    • /
    • pp.947-978
    • /
    • 2007
  • In this paper, we investigated a Value-at-Risk approach to the volatility of two crude oil markets (Brent and Dubai). We also assessed the performance of various VaR models (RiskMetrics, GARCH, IGARCH and FIGARCH models) with the normal and skewed Student-t distribution innovations. The FIGARCH model outperforms the GARCH and IGARCH models in capturing the long memory property in the volatility of crude oil markets returns. This implies that the long memory property is prevalent in the volatility of crude oil returns. In addition, from the results of VaR analysis, the FIGARCH model with the skewed Student-t distribution innovation predicts critical loss more accurately than other models with the normal distribution innovation for both long and short positions. This finding indicates that the skewed Student-t distribution innovation is better for modeling the skewness and excess kurtosis in the distribution of crude oil returns. Overall, these findings might improve the measurement of the dynamics of crude oil prices and provide an accurate estimation of VaR for buyers and sellers in crude oil markets.

  • PDF

Validity assessment of VaR with Laplacian distribution (라플라스 분포 기반의 VaR 측정 방법의 적정성 평가)

  • Byun, Bu-Guen;Yoo, Do-Sik;Lim, Jongtae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1263-1274
    • /
    • 2013
  • VaR (value at risk), which represents the expectation of the worst loss that may occur over a period of time within a given level of confidence, is currently used by various financial institutions for the purpose of risk management. In the majority of previous studies, the probability of return has been modeled with normal distribution. Recently Chen et al. (2010) measured VaR with asymmetric Laplacian distribution. However, it is difficult to estimate the mode, the skewness, and the degree of variance that determine the shape of an asymmetric Laplacian distribution with limited data in the real-world market. In this paper, we show that the VaR estimated with (symmetric) Laplacian distribution model provides more accuracy than those with normal distribution model or asymmetric Laplacian distribution model with real world stock market data and with various statistical measures.