• Title/Summary/Keyword: Value-added Coefficient

Search Result 189, Processing Time 0.025 seconds

Estimation of the Properties for the $SiC-TiB_2$ Electroconductive Ceramic Composites by YAG and Porosity (YAG와 기공에 의한 $SiC-TiB_2$ 전도성세라믹 복합체의 특성 평가)

  • Sin, Yong-Deok;Lee, Dong-Yun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.11
    • /
    • pp.544-549
    • /
    • 2001
  • The mechanical and electrical properties of the hot-pressed and pressureless annealed SiC-39vo1.%TiB$_2$electroconductive ceramic composites were investigated as functions of the liquid additives of $Al_2O_3+Y_2O_3$ and the sintering temperature. The result of phase analysis for the SiC-39vo1.%TiB$_2$ composites by XRD revealed $\alpha -SiC(6H),\; TiB_2,\; and YAG(Al_5Y_3O_{12})$ crystal phase. The relative density of SiC-39vo1.% $TiB_2$ composites was increased with increased $Al_2O_3+Y_2O_3$ contents. The fracture toughness showed the highest value of $7.8 MPa.m_{1/2}$ for composites added with 12 wt% $Al_2O_3+Y_2O_3$additives at $1750^{\circk}C$. The electrical resistivity of the SiC-39vo1.%$TiB_2$composites was all positive temperature coefficient resistance(PTCR) in the temperature range of $25S^{\circ}C \;to\; 700^{\circ}C$.

  • PDF

Characteristics of PBZT Ceramics for Electrostrictive Actuator according to $WO_3$ (전외 액츄에이터용 PBZT 세라믹스의 $WO_3$ 첨가에 따른 특성)

  • 김규수;윤광희;윤현상;박창엽;홍재일;류주현
    • Electrical & Electronic Materials
    • /
    • v.10 no.9
    • /
    • pp.909-915
    • /
    • 1997
  • To improve the electro-induced strain and to decease the hysteresis of that W $O_3$dopant of which amount is 0~0.8wt% was added to (P $b_{0.73}$/B $a_{0.27}$)(Z $r_{0.75}$/ $Ti_{0.25}$) $O_3$+0.1wt% $Y_{2}$/ $O_3$ceramics. At the specimen with 0.4 wt% W $O_3$the electromechanical coupling coefficient( $K_{31}$ ) showed the maximum value of 23.6% at D.C 10 kV/cm electric field. At the same W $O_3$addition amount the piezoelectric constant( $d_{31}$ ) and the electro-induced strain($\Delta$$\ell$/$\ell$)showed the highest values of 182$\times$10$^{-12}$ [C/N] 210$\times$10$^{-6}$ $\Delta$$\ell$/$\ell$at D.C. 10 kV/cm electric field. respectively0 kV/cm electric field. respectivelyvely.

  • PDF

A Tailored Investigation for $(Ba,Sr)TiO_3$ FGMs

  • Jeon, Jae-Ho
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.289-290
    • /
    • 2006
  • [ $SrTiO_3$ ] is usually added as shifters in order to move the $T_C$ of $BaTiO_3$ to lower temperatures because it is well established that the $T_C$ of $BaTiO_3$ decreases linearly with a solid solution of $Sr^{+2}$ in place of $Ba^{+2}$. It is not fully understood yet, however, how $SrTiO_3$ influences on the peak value of the dielectric constant $(\varepsilon_{max})$ at the $T_C$ of $BaTiO_3$. This research reports the effect of $SrTiO_3$ addition on εmax at the $T_C$ of $BaTiO_3$ ceramics. Based on the chemical composition and the grain size dependence of the dielectric property of $BaTiO_3$ ceramics, functionally graded $(Ba,Sr)TiO_3$ composites were designed and fabricated. Multi-layered $(Ba,Sr)TiO_3$ composites with a compositional gradient of $SrTiO_3$ exhibited a low temperature coefficient and high dielectric constant in a wide temperature range.

  • PDF

A Study on Analyzing Thermal Strain of Weldment during Cooling used at Low MS Point Weld Consumables (MS Point 저감 용접재에 적용한 냉각시 용접부 열변형률 분석에 관한 연구)

  • Ha, Yunsok;Nam, Seongkil;Park, Sejin;Kwon, Changgil
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.37-43
    • /
    • 2013
  • This study targets to make clear the connection between MS (Martensite start) point and welding shrinkage. We approved that a Martensite-transformed weldment may not yield state under low MS point, but also admitted the limitation of numerical calculation by inherent strain approach or thermal strain approach. Therefore, new thermal strain formulae during cooling stages were made. As a thermal strain is obtained by integrating thermal extension coefficient, a constant of integration should be decided. In our suggested formulae, the origin was based on totally remained austenite, and added strain from volume changes in Martensite transformation was based on totally transformed ferrite. Through the suggested methodology, It is verified that an MS point under a critical temperature can let weld shrinkage relax and the critical value can be obtained. For supporting this process, 15 weld-consumables were made, were tested by fillet type and were measured. As a result, a positive correlation between MS point and level of weld-distortion was obtained, but it was rather weak.

Is It Possible to Achieve IMO Carbon Emission Reduction Targets at the Current Pace of Technological Progress?

  • Choi, Gun-Woo;Yun, Heesung;Hwang, Soo-Jin
    • Journal of Korea Trade
    • /
    • v.26 no.1
    • /
    • pp.113-125
    • /
    • 2022
  • Purpose - The primary purpose of this study is to verify whether the target set out by the International Maritime Organization (IMO) for reducing carbon emissions from ships can be achieved by quantitatively analyzing the trends in technological advances of fuel oil consumption in the container shipping market. To achieve this purpose, several scenarios are designed considering various options such as eco-friendly fuels, low-speed operation, and the growth in ship size. Design/methodology - The vessel size and speed used in prior studies are utilized to estimate the fuel oil consumption of container ships and the pace of technological progress and Energy Efficiency Design Index (EEDI) regulations are added. A database of 5,260 container ships, as of 2019, is used for multiple linear regression and quantile regression analyses. Findings - The fuel oil consumption of vessels is predominantly affected by their speed, followed by their size, and the annual technological progress is estimated to be 0.57%. As the quantile increases, the influence of ship size and pace of technological progress increases, while the influence of speed and coefficient of EEDI variables decreases. Originality/value - The conservative estimation of carbon emission drawn by a quantitative analysis of the technological progress concerning the fuel efficiency of container vessels shows that it is not possible to achieve IMO targets. Therefore, innovative efforts beyond the current scope of technological progress are required.

How Does Intellectual Capital Fuel Non-Interest Incomes in Banks? New Case from an Emerging Country

  • Chi Huu Lu;Thich Van Nguyen
    • Journal of Contemporary Eastern Asia
    • /
    • v.22 no.1
    • /
    • pp.1-25
    • /
    • 2023
  • The aim of this study is to answer the straightforward question of whether the implementation of IC has fueled non-interest incomes of banks or not. By utilizing the data of 26 domestic banks in Vietnam and employing the value-added intellectual coefficient model (VAIC) as the measure of IC efficiency, our empirical evidence manifests that IC plays a vital role in fostering non-interest incomes of banks. When dividing VAIC into different components, we find that structure capital employed (SCE) is the most important component to enhance the expansion of these incomes compared with other components including capital employed efficiency (CEE), human capital efficiency (HCE). These findings remain unchanged through some robustness tests performed. While the main driver of IC and SCE, CEE component becomes a substantial advantage to increase non-interest incomes in large banks. Meanwhile, the degree of impact of SCE is higher in small banks compared with large ones. Overall, this study would provide a deep insight into the role of IC in the transformation into non-interest income activities of banks in an emerging country, and therefore our findings would be useful for both scholars and policy-makers in Vietnam, where has undergone the period of major reforms in banking system.

Quantitative analysis of hyperoside and isoquercitrin in methanolic extract of Stewartia koreana leaves using HPLC-DAD

  • Ju-Yeong Kang;Yu Hwa Kim;Youngdae Yoon;Bong-Gyu Kim
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.436-446
    • /
    • 2023
  • Since Stewartia koreana leaves are registered with the Food and Drug Administration as edible herbal materials, they are used in the development of functional foods, cosmetics, and medicines. In this study, we established an analysis method that can simultaneously analyze two indicators, hyperoside (quercetin 3-O-galactoside) and isoquercitrin (quercetin 3-O-glucoside) contained in the leaves of S. koreana using HPLC-DAD. In accordance with the Ministry of Food and Drug Safety's health functional food guidelines, the analysis method was verified for specificity, accuracy, precision, limit of quantification, and linearity. The analysis method established in this study showed more than 0.9989 of the correlation coefficient values (r2) for the calibration. The total recovery rates of isoquercitrin and hyperoside were 100.55 and 98.87% with 0.14-0.78 and 0.47-0.67% of the relative standard deviation, respectively. Therefore, it was suggested that the new analytical method would be applied to standardize raw materials and high value-added products originated from the leaves of the S. koreana in the future.

Effects of In Situ YAG on Properties of the Pressurless Annealed Sic-$TiB_2$ Electroconductive Ceramic Composites (무가압 어닐드한 Sic-$TiB_2$ 전도성 복합체의 특성에 미치는 In Situ YAG의 영향)

  • Shin, Yong-Deok;Ju, Jin-Young;Ko, Tae-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.808-815
    • /
    • 2008
  • The composites were fabricated 61[vol.%] ${\beta}$-SiC and 39[vol.%] $TiB_2$ powders with the liquid forming additives of 8, 12, 16[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid by pressureless annealing at 1650[$^{\circ}C$] for 4 hours. The present study investigated the influence of the content of $Al_2O_3+Y_2O_3$ sintering additives on the microstructure, mechanical and electrical properties of the pressureless annealed SiC-$TiB_2$ electroconductive ceramic composites. Reactions between SiC and transition metal $TiB_2$ were not observed in the microstructure and the phase analysis of the pressureless annealed SiC-$TiB_2$ electroconductive ceramic composites. Phase analysis of SiC-$TiB_2$ composites by XRD revealed mostly of ${\alpha}$-SiC(6H), ${\beta}$-SiC(3C), $TiB_2$, and In Situ YAG($Al_2Y_3O_{12}$). The relative density of SiC-$TiB_2$ composites was lowered due to gaseous products of the result of reaction between SiC and $Al_2O_3+Y_2O_3$. There is another reason which pressureless annealed temperature 1650[$^{\circ}C$] is lower $300{\sim}450[^{\circ}C]$ than applied pressure sintering temperature $1950{\sim}2100[^{\circ}C]$. The relative density, the flexural strength, the Young's modulus and the Vicker's hardness showed the highest value of 82.29[%], 189.5[Mpa], 54.60[Gpa] and 2.84[Gpa] for SiC-$TiB_2$ composites added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at room temperature. Abnormal grain growth takes place during phase transformation from ${\beta}$-SiC into ${\alpha}$-SiC was correlated with In Situ YAG phase by reaction between $Al_2O_3$ and $Y_2O_3$ additive during sintering. The electrical resistivity showed the lowest value of 0.0117[${\Omega}{\cdot}cm$] for 16[wt%] $Al_2O_3+Y_2O_3$ additives at 25[$^{\circ}C$]. The electrical resistivity was all negative temperature coefficient resistance (NTCR) in the temperature ranges from $25^{\circ}C$ to 700[$^{\circ}C$]. The resistance temperature coefficient of composite showed the lowest value of $-2.3{\times}10^{-3}[^{\circ}C]^{-1}$ for 16[wt%] additives in the temperature ranges from 25[$^{\circ}C$] to 100[$^{\circ}C$].

Transformation Characteristics of Chlorinated Aliphatic Hydrocarbon (CAH) Mixtures by Natural Ores (자연광석을 이용한 염소계 지방족 탄화수소 혼합물 변환 특성)

  • Son, Bong-han;Kim, Nam-hee;Hong, Kwang-pyo;Yun, Jun-ki;Lee, Chae-young;Kim, Young;Kwon, Soo-youl
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.712-722
    • /
    • 2007
  • This study screened three natural ores (iron, mangenase, and zinc), two types of slags, and two elemental metals (elemental iron and zinc) to evaluate transformation characteristics of CAH mixtures [e.g. Carbontetrachloride (CT), 1,1,1-Trichloroethane (1,1,1-TCA), and Perchloroethene (PCE)]. To select an effective metal medium to treat the CAH mixtures, we measured transformation capacities (CAH mass ultimately transformed/mass of metal added) and the degree of dechlorination. We also considered economical efficiency of the metal media by comparing the value, CAH mass ultimately transformed divided by the price of metal medium added. A simplified mathematical model adapting CAH transformation capacity, first-order transformation kinetics, and available mass of metal transforming CAH was developed and used for estimating CAH transformation rate coefficient and longevity of the metal medium. CAH transformation capacity for elemental iron and elemental zinc were 4258~7129 and $4215{\sim}6330{\mu}g\;CAH\;transformed/g$ metal added, respectively, which are a factor of 80~200 higher than slags and natural ores. They also showed a factor of 1.1 to 2.2 greater degree of dechlorination than the others. Among natural ores and slags, Zinc ore showed the highest transformation capacity, $47{\sim}53{\mu}g\;CAH\;transformed/g$ metal added. Although zinc ore have smaller transformation capacity than elemental metals, economical efficiency of zinc ore is a factor of 10~20 greater than elemental metals tested. Consequently, zinc ore would be more economical medium than the others tested in this study. We estimated the pseudo first-order transformation rate of zinc ore was in the order of CT > 1,1,1-TCA > PCE.

Study of Basic Properties to Develope SiC Ceramic Heater by Self-Charge with Electricity (자기 통전식 SiC세라믹 발열체 개발을 위한 기초 특성 연구)

  • Shin, Yong-Deok;Ko, Tae-Hun;Ju, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.124-125
    • /
    • 2007
  • The composites were fabricated $\beta$-SiC and $TiB_2$ powders with the liquid forming additives of 8, 12, 16[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid by pressureless annealing at $1,650[^{\circ}C]$ for 4 hours. Reactions between SiC and transition metal $TiB_2$ were not observed in the microstructure and the phase analysis of the pressureless annealed SiC-$TiB_2$ electroconductive ceramic composites. The relative density, the flexural strength, the Young's modulus and the Vicker's hardness showed the highest value of 82.29[%], 189.5[MPa], 54.60 [GPa] and 2.84[GPa] for SiC-$TiB_2$ composites added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at room temperature. The relative density of SiC-$TiB_2$ composites was lowered due to gaseous products of the result of reaction between SiC and $Al_2O_3+Y_2O_3$. The electrical resistivity showed the lowest value of 0.012[${\Omega}{\cdot}cm$] for 16[wt%] at 25[$^{\circ}C$]. The electrical resistivity was all negative temperature coefficient resistance (NTCR) in the temperature ranges from 25[$^{\circ}C$] to 700[$^{\circ}C$].

  • PDF