• Title/Summary/Keyword: Value chain in Solar industry

Search Result 7, Processing Time 0.022 seconds

A Study on Economic Performance and its Determinants by Value-Chain in Korean Solar Energy Companies (한국 태양에너지기업의 가치사슬별 경제적 성과 요인분석)

  • Kim, Dok-Han;Park, Sung-Hwan;Park, Jung-Gu
    • Journal of Energy Engineering
    • /
    • v.18 no.3
    • /
    • pp.175-190
    • /
    • 2009
  • This study examines the influence of scale economy, technology, financing capability and market competition on economic performance by value chain in Korean solar energy companies, using the multiple logistic regression analysis. The current profit ratio is analyzed to have been positively affected by financing capability, while negatively by market competition. The scale economy and technology are analyzed to have no statistical significance on the economic performance. The current profit ratio for companies creating higher value in the sourcing process is negatively affected by technology while positively by financial capability. The one in the manufacturing process is affected positively by technology and financing capability, and the one in the marketing process is affected positively by financing capability while negatively by market competition. The implications of this study are as follows: Korean solar energy industry is recommended i) to establish the specific innovation system for technology development, ii) to set up advanced financial system, iii) to carry out the fractal system, the manufacturing system through the network of the firms owning core competence per value chain.

Vertical Integration of Solar business and its Value Analysis: Efficiency or Flexibility (태양광 수직통합화가 사업가치에 미치는 영향: 효율성 및 유연성)

  • Kim, Kyung-Nam;Jeon, Woo-Chan;SonU, Suk-Ho
    • New & Renewable Energy
    • /
    • v.8 no.2
    • /
    • pp.33-43
    • /
    • 2012
  • Why solar companies preferred vertical integration of whole value chain? Major solar companies have built internally strong vertical integration of entire PV value chain. We raise a question whether such integration increases the corporate value and whether market situation affects the result. To test these questions, we conducted multi-variant analysis where characteristic factors mainly affect the corporate value measured in terms of Tobin'Q, based on the financial and non-financial data of PV companies listed in US stock market between 2005 and 2010. We hypothesize that since integration increases the overall efficiency but decreases the flexibility to adjust to various market situation, the combined effect of the efficiency gain and the flexibility loss ultimately determines the sign of integration effect on the corporate vale. We infer that the combined effect will be influenced heavily by business cycle, as in boom market (Seller's market) the efficiency gain may be larger than the flexibility loss and vice versa in bust market. We test whether the sign of combined effect changes after the year of 2009 and which factors influence most the sign. Year of 2009 is known as the year when market shifted from Seller's to Buyer's market. We show that 1) integration increases corporate value in general but after 2009 integration significantly decreases the value, 2) the ratios such as Production/Total Cost, Cash turnover period chosen for reversal of the flexibility measure are negatively affect Tobin's Q and especially stronger after 2009. This shows the flexibility improves corporate value and stronger in the recess period (Buyer's market). These results imply that solar company should set up integration strategy considering the tradeoff between efficiency and flexibility and the impact of the business cycle on both factors. Strategy only based on the price competitiveness determined in boom time can bring undesirable outcomes to the company. In addition, Strategic alliances in some value chains as a flexible bondage should be taken in account as complementary choice to the rigid integration.

A Study on The Virtuous Cycle of The Value Chain and Value System in Korean Photovoltaic Industry (한국 태양광산업의 가치사슬과 가치시스템 선순환 구조 분석)

  • Park, Sung-Hwan;Park, Min-Hyug;Park, Jung-Gu
    • Journal of Energy Engineering
    • /
    • v.23 no.1
    • /
    • pp.21-32
    • /
    • 2014
  • This study has analyzed whether the virtuous cycle of value-added between the processes within the company has formed and whether the virtuous ecosystem between the processes within the industry has been built through the analysis of value chain(VC) and value system(VS) targeting the Korean photovoltaic companies. For a study method, after conducting a survey on the companies, a regression analysis was performed on the causal relationship between the process within the VC and VS. Based on the results of the analysis, for the VC of the Korean photovoltaic industry, an increase in the R&D support from the government has led to the increase in the investment of R&D for the related industry, and the increase in the investment of R&D has contributed to the increase in the growth of its productivity, and the growth in the productivity of R&D has influenced the increase in the production of solar products. In addition, the reduction of photovoltaic production cost for the company has influenced the increase of recurring profit margin compared to the sales. However it was shown that the increase in the company's production volume does not contribute to the reduction of production cost. Meanwhile, the increase in recurring profit margin compared to the sales were influencing the increase in the production volume but it was shown that the increase in the company's investment of R&D was not a contributing factor thus it was not included in the virtuous cycle. It was analyzed that the VS was shown not to influence all other processes within the industry except for the module companies where the increase in the recurring profit margin compared to the sales was influenced by the increase in the recurring profit margin compared to the sales of solar cell companies. This shows that the virtuous industrial ecosystem which should be made under the mutual cooperation by the ingot, wafer, solar cell, module and system companies are yet incomplete.

A Study on Validity of Anti-PID Technology of Solar Cell for the High Reliability of Photovoltaics System (태양광 발전시스템의 신뢰성 향상을 위한 태양전지의 PID 저감 기술의 타당성 검토)

  • Baik, Sungsun;Baek, Seungyup;Jung, Tae-Wook;Cho, Jin-Hyng
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.2
    • /
    • pp.32-38
    • /
    • 2013
  • In recent years, anti-PID (Potential Induced Degradation) technologies have been studied and developed at various stages throughout the solar value chain from solar cells to systems in an effort to enhance long-term reliability of the photovoltaics (PV) system. Such technologies and applications must bring in profits economically for both manufacturers of solar cell/module and investors of PV systems, simultaneously for the development of the PV industry. In this study two selected anti-PID technologies, ES (modification of emitter structure) and ARC (modification of anti-reflective coating) were compared based on the economic features of both a cell maker with 60MW production capacity and an investor of 1MW PV power plant. As a result of this study, it is shown that ARC anti-PID technology can ensure more profits over ES technology for both the cell manufacturer and the investor of PV power plant.

Status of Photovoltaics in Korea (국내 태양광발전 산업 현황)

  • Kim, Hyun-Il;Kang, Gi-Hwan;Park, Kyung-Eun;Yu, Gwon-Jong;Suh, Seung-Jik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.196-201
    • /
    • 2008
  • The photovoltaic(PV) industry has been growing around the PV advanced countries such as Japan, Germany, Europe and USA. In recent years, China became a strong performer in the world PV market share, increasing solar cell production rapidly The global photovoltaic (PV) market grew by over 40% in 2007, with approximately 2.3GW of newly installed capacity. The global cumulative installed capacity has reached 9GW. The cumulative installed power of PV system in Korea tremendously increased to 74.7MW at the end of 2007. Up to Sep. 2008 The cumulative installed power of PV system in Korea is approximately 377MW. The value chain of photovoltaic in Korea is creating actively. Thus Korea is predicted to see 800MW of modules installed in 2010. Korea's renewable energy is also targeting to take 5% of the total energy consumption by 2011.

  • PDF

Technological Innovation System for Energy Transition in Small Island Developing States: Adaptive Capacity, Market Formation and Policy Direction in the Maldives

  • Mohamed, Shumais
    • Asian Journal of Innovation and Policy
    • /
    • v.11 no.3
    • /
    • pp.293-319
    • /
    • 2022
  • By analyzing the adaptive capacity, market formation and policy direction as functional areas of Technological Innovation System (TIS), the article evaluates the progress of renewable energy transition in the Maldives, with the inclusion of ideas from Mauritius and Cabo Verde. On the policy direction in the Maldives, technology roadmaps produced with assistance from International Renewable Energy Agency (IRENA) and Asian Development Bank (ADB) are evaluated. Although there are inducing factors such as the Solar Risk Management Initiative, the progress of energy transition is hindered by the lack of technical capacity and local value chain. The findings indicate the importance of facilitating and establishing industry and knowledge networks, incorporating innovation policies, greater involvement of the local private sector along with international investors, and taking water-energy nexus to achieve complementary targets. The study adds value to knowledge by offering a simplified TIS framework, with a current insight of the energy transition in Small Island Developing States with a focus on the Maldives.

Environmental Change and Policy of Solar Photovoltaic Industry (태양광 산업의 환경 변화와 정책)

  • Choi, Hyukjoon;Kim, Minji;Kim, Haeyeon;Yun, Ga-Hye;Lim, Seok Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.153-153
    • /
    • 2011
  • 신 재생에너지 정책이 발전차액지원제도(Feed In Tariff; FIT)에서 신 재생에너지 의무할당제(Renewable Portfolio Standard; RPS)로 변화하면서 원별 경쟁이 가속화되고 있다. 태양광 산업 역시 이러한 환경 변화에 대처해야 하며, 그를 위한 정책 구성이 필요하다. 이에 태양광 산업 정책은 크게 두 부분으로 구분하여 진행해야 한다. 첫째, 폴리실리콘(Poly silicon)을 활용하는 다결정실리콘 태양광에너지에 초점을 맞춘 정책이며, 둘째, 미래에 상용화될 차세대 태양광 에너지에 대한 대비를 위한 연구 개발(R&D) 정책이다. 먼저 다결정실리콘 태양광에너지에 초점에서의 산업 정책은 산업육성정책과 수출정책, 인프라 구성 등으로 나눌 수 있다. 현재 과도한 국가부채로 인한 세계경제 악화로 태양광에너지 업체들의 경제성이 악화하고 있다. 더욱 빨리 그리드 패리티(Grid Parity)를 달성하기 위해 수직통합 등의 필요성이 대두하고 있다. 이에 본 연구는 그리드 패리티 달성시기를 위해 태양광 산업 내 세대 변화를 하는 경우와 하지 않는 경우를 비교하기 위해 고려할 요소를 분석하였다. 현재 신 재생에너지 가운데 태양광에너지는 타에너지원 대비 가격경쟁력을 갖추지 못한 상황이다. 그러나 수출을 고려했을 때의 향후 한국의 차세대 성장동력으로의 발전가능성이 존재한다. 따라서 가격경쟁력이 가장 중요한 영향을 미칠 신 재생에너지 의무할당제 정책 하에서 태양광에너지가 전혀 채택되지 않는 상황을 막기 위한 정책이 필요하다. 그를 위해 필요한 정책적 요소들을 알아보았다. 마지막으로 인프라 구성을 위해 태양광 산업의 가치사슬(Value Chain) 상에서의 기업 분포와 경쟁력에 대한 조사를 시행하였다. 이는 태양광 산업 내의 경쟁력을 갖춘 부문과 그렇지 못한 부문을 구별하기 위함이다. 미래에 상용화될 차세대 태양광 에너지를 준비하는 과정에서는 연구개발 관련 정책이 가장 중요하게 다뤄야 할 부분이며, 그를 위해 정부 차원에서 지원하고자 하는 기술로드맵 등에 대해서 정리하였다.

  • PDF