• Title/Summary/Keyword: Valley water

Search Result 250, Processing Time 0.024 seconds

Application of Observance-Influence Analysis Techique in a National Park Management (국립공원(國立公園) 관리(管理)에 관찰도(觀察度) - 영향도(影響度) 분석(分析) 기법(技法) 적용(適用))

  • Shin, Won Sop
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.2
    • /
    • pp.211-219
    • /
    • 1998
  • The major purpose of this study was to analyze the observance of attributes influencing on park visitors' experiences. The Importance-Performance technique has been commonly used to evaluate the importance of various recreation programs and management. In this study, the Importance-Performance technique was adopted to present a new approach called Observance-Influence Analysis. During the summer of 1996, 550 Worak-san National Park visitors were surveyed. The results of this study indicated that physical and biological attributes such as clear water, clean air, and beautiful valley, etc. were highly observed by visitors and those also highly influenced on visitors' experiences. Based on the respondents' rating to the attributes, action grid was formulated to suggest management actions. As mentioned before, attributes such as clear water, clean air, and beautiful valley were recognized as attributes needed concentrate efforts. Attributes related to forests such as diverse plants and trees, well maintained forests, etc. were also suggested as potential concerned attributes. However attributes related to services did not influenced highly on the visitors' experiences.

  • PDF

Analysis on Fluvial Geomorphological Characteristics based on Past and Present Data for River Restoration: An Application to the Miho River and the Naesung River (하천 복원을 위한 과거 및 현재 자료 기반의 하천지형학적 특성 분석: 미호천과 내성천을 중심으로)

  • Lee, Chan Joo;Kim, Ji Sung;Kim, Kyu Ho;Shin, Hyoung Sub
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.3
    • /
    • pp.169-183
    • /
    • 2015
  • As a basic work for river restoration, analysis on fluvial geomorphological characteristics is made using past and present data to understand close-to-nature geomorphic status. The Miho and the Naesung Rivers are targets of this study. Fluvial geomorphic variables including valley-floor width, sinuosity, bankfull width, channel gradient, bed material size, bankfull discharge and unit stream power are evaluated with dominant processes. Though common sand-bed rivers with similar catchment area, the Miho and the Naesung Rivers are different in terms of valley-floor width, channel shape variables and dominant processes related with longitudinal location. In addition, analyses on interrelationship among the geomorphological variables are carried. Bankfull width is shown to be proportional to bankfull discharge, as is in a rough agreement with the previous studies. Relationship of bankfull discharge and channel gradient shows meandering and braiding are prevalent in the Miho River, whereas the most of the sub-reaches of the Naesung River fall to braiding. Relationship of channel gradient with width-depth ratio indicates dune-ripple processes are dominant in the Miho River, while the Naesung River shows longitudinal diversity from braiding in the downstream sub-reaches to riffle-pool and plane-bed along the upper ones. Analyses based on the past data on a river in a close-to-nature status are thought to be rather reasonable in comparison with those on the same river in a engineered condition.

A Geomorphological Study on the Distribution Areas of Freezing during Summer Season in Korea (한국의 하계 동결현상 분포지에 관한 지형학적 연구)

  • Jeon, Young-Gweon
    • Journal of the Korean association of regional geographers
    • /
    • v.7 no.1
    • /
    • pp.97-106
    • /
    • 2001
  • There are a few interesting areas which show freezing during summer season in Korea, three of them are especially important. They are located at Milyang(Gyungnam province), Uisung and Chungsong(Gyungbook province). They are named Eoleumgol(ice-valley) or Binghyul(ice-cave). The purpose of this study is to clarify geomorphological and geological characteristics about the distribution areas of freezing during summer season in Korea in relation to previous works, which have been studied in hydrological or micro-climatological viewpoints. The main results are summarized as follows. 1) The main geomorphological and geological characteristics in the distribution areas of freezing during summer season (1) Thick debris accumulated slope within deep valley (2) North facing slope (3) The component debris of volcanic rock such as andesite or rhyolite 2) The ice-cave as a system that give rise to freezing phenomenon in summer season is closely related to talus slope. The ice-cave has thick accumulated debris and lots of vacant spaces within the rock deposits, some of vacant spaces are very big and connected with underground water system. 3) A partly freezing within underground water system is required freezing phenomenon in summer season. Judging from this point of view, two ideas are suggested; one is the evaporation theory, another is that the frozen condition in winter remains untill late summer.

  • PDF

Environmental Isotope-Aided Studies on River Water and Ground Water Interaction in the Region of Seoul Part I: Isotope Hydrology of the Shallow Alluvial Aquifer Han R. Valley (동위원소를 이용한 서울 지역의 강수와 지하수와의 상호연관성에 관한 연구 제 1 보 : 동위원소를 이용한 한강류역 충적대수층 지하수의 수문학적 연구)

  • Jong Sung Ahn;Jae Sung Kim;You Sun Kim;Peter Airey;Bryan Payne
    • Nuclear Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.85-96
    • /
    • 1981
  • A preliminary study of the isotope hydrology of the Han River Valley is presented. This investigation is part of a project whose overall aim is to relate the levels of heavy metal ions to the dynamics of the groundwater movement in order to establish (i) whether there is any evidence for the deterioration in groundwater quality associated with the release of industrial effluents and (ii) if so, to determine the migration path-ways. Evidence is adduced that the recharge mechanism is principally determined by the degree of urbanisation. In the metropolitan area of Seoul, river recharge dominates probably due to the combined effects of reduced infiltration and increased pumpage. In the inter-urban region, the major source of recharge is local precipitation. During the spring sampling period when the river levels were low. evidence was obtained for appreciable groundwater infiltration in the vicinity of the upstream transect. No significant correlations were observed between the levels of heavy metals in the groundwater, and the recharge mechanism, the distance from the river or the electrical conductivity of the samples.

  • PDF

The Analysis of Growth Environment on Corylopsis coreana Community in Hallyeohaesang National Park (한려해상국립공원 히어리군락의 생육환경 분석)

  • Shin, Seoung-Ho;Kim, Jong-Sub;Kim, Jong-Myung;Seo, Dong-Jin;Kang, Hee-Gon;Kim, Min-Kyu;Jo, Gye-Jung;Goo, Chur-Hyun;Park, Eun-Hee
    • Journal of agriculture & life science
    • /
    • v.45 no.5
    • /
    • pp.49-56
    • /
    • 2011
  • This study was conducted to provide data for the maintenance of the Corylopsis coreana community within the Hallyeohaesang National Park. Survey site of Corylopsis coreana community was located at a valley, which composed of over 60% exposed rock. As this result, much of the species was damaged or washed away due to the water flow from rainfall. The tree layers dominant species were Quercus serrata and Pinus densiflora. while the subtree layers dominant species were Corylopsis coreana, Acer pseudosieboldianum, Sapium japonicum, Chamaecyparis obtusa and Cornus kousa etc. The shrub layers dominant species were Callicarpa japonica and Smilax china etc., and herbaceous layers dominant species were Disporum smilacinum etc. Increased precipitation and rainfall days were observed from May to September in this valley during 2008~2010, which likely increased soil erosion and damage. Because water flow pattern was dispersed the Corylopsis coreana seed and the soil floor was shallow, and population of Corylopsis coreana seedlings were diminished.

암반지하수 저류지 개발 전망

  • 이기철;한정상;부성안;장준영;박종철
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.85-92
    • /
    • 2002
  • When the United Nation classified as Korea is the one of the water deficit country. The consensus was made that the water is the one of the precious national resources. Government increases their R/D budget trying to get more clean water bodies. For instances, 'Sustainable Water Resources Development' project is the one of major title in '21 Century Frontier Research project and there are several small research projects are undergoing by the Ministry of Agriculture and KARICO. However, when the environmental preservation issue has been get more emphasis, construction of the Surface Dam met the blockage from the environmentalists due to the problem of the their water buried area. Since the most fitting site for surface dam had been used in the past, some engineer move their focus on modification of the existing Dam's height to enlarge its capacity or dredging the bottom of the reservoir recently However dredging evoke water quality problem in return by accumulated materials at the bottom. Last year the Dong Gang Dam plan has been canceled by environmental problem in water buried area of the reservoir. With the point of this view, ground water gets more focus for the one of the useful alternative for clean water bodies. Underground dam technique which had widely applied once in the early nineteen eighties by the KARICO and attenuated due to engineering insufficiency. The technique is newly studied with the advanced engineering technique. Still groundwater usage rate in Korea is much lower comparing with the advanced countries and has many rooms to develop. Wells, under ground dam and radial collector wells are typical facilities up to now. There is little application in Korea for the Recharge Dam, which had been widely used in the advanced countries. The Recharge Dam is technique to conjunct surface water and groundwater body together, This technique had developed to increase groundwater recharge at the beginning This research is the result of the study on the possibility of the development of the new technology, Groundwater Reservoir' which was modified from Recharge Dam. Groundwater Reservoir is like a deep artificial lakes trenched in hard rock aquifer to get groundwater. The advantage of the Groundwater Reservoir is followings 1) It can be developed at the plains area, not in the deep valley 2) Huge water body can be developed without dam 3) Small buried area comparing surface water dam makes the least environmental effect. 4) Trenching cost can be substitute by the income of the selling rock debris 5) Outfit of the reservoir can be modified to match with the site prospect 6) Rock debris can be used as constructing materials 7) It can be used as groundwater recharge system when the heavy rains comes 8) The reservoir looks like scenery lake with huge clean water bodies.

  • PDF

Four months of magnetized water supplementation improves glycemic control, antioxidant status, and cellualr DNA damage in db/db mice (제2형 당뇨 모델 db/db 마우스에서 4개월의 자화수 섭취 후 혈당, 항산화 상태 및 세포 DNA 손상 개선 효과)

  • Lee, Hye-Jin;Kang, Myung-Hee
    • Journal of Nutrition and Health
    • /
    • v.49 no.6
    • /
    • pp.401-410
    • /
    • 2016
  • Purpose: Water is magnetically charged upon contact with a magnet. Although magnetic water products have been promoted since the 1930's, they have not received wide acceptance since their effectiveness is still in question; however, some have reported their therapeutic effects on the body, especially the digestive, nervous, and urinary systems. Methods: In this study, the effect of magnetized water on glycemic control of 14 diabetic mice (CB57BK/KsJ-db/db) in comparison with 10 control mice (CB57BK/KsJ-db/+(db/+)) was investigated. Seven diabetic control (DMC) mice and seven diabetic mice + magnetized water (DM+MW) were kept for 16 weeks, followed by intraperitoneal glucose tolerance test (IPGTT). Weekly blood glucose was measured from tail veins. Blood obtained from heart puncture was used for HbA1c analysis. Results: Blood glucose level showed a significant difference starting from the $10^{th}$ week of study ($496.1{\pm}10.2mg/dl$ in DMC vs. $437.9{\pm}76.9mg/dl$ in DM+MW). Blood glucose followed by IPGTT showed no significant difference between groups at 0, 30, 60, 90, and 120 min, although glucose level at 180 min was significantly reduced in DM+MW mice. Plasma insulin level in DM+MW groups was only 39.5% of that of DMC groups ($5.97{\pm}1.69ng/ml$ in DMC vs. $2.36{\pm}0.94ng/ml$ in DM+MW). Levels of HbA1c were 12.4% and 9.7% in DMC and DM+MW groups, respectively. Conclusion: These results show the promising therapeutic effect of magnetized water in regulating blood glucose homeostasis; however, long-term supplementation or mechanistic study is necessary.

Groundwater of bed rocks in South Korean Penninsula (한반도의 암반 지하수에 관한 연구)

  • 한정상
    • Water for future
    • /
    • v.14 no.4
    • /
    • pp.73-81
    • /
    • 1981
  • More than 650 numbers of water well ranging in depth from 100M to 200M were installed in South Korean Penninsula during the last decade for the purpose of industrial use and municipal water supply. Those data were compiled and synthesized by writer to determine their hydrogeologic occurences in accordance with their geologic and areal characteristics. Rocks yielding the deep seated ground water beared in the geologic primary and secondary porosities are classified into 6 groups according to their geologic, hydrogeologic, and topographic characteristics, that are: volcanic, sedimentary, meta-sediment and/or schist, andesitic, gneissic, and granitic rocks. The order of ground water productivity of the groups is as written above. Even granitic rocks including porphyries, granite, and intermediate and basic plutonic rocks is considered to be the most poorest ground water yielding group among 6, it's average yield form a single well with average drilling depth of 116M is about 225 cubic meters per day if it's drilling site is properly located. Generally speaking, seizable geologic structures such as fractured, sheared, and faulted zone at the flat surface and valley center yield almost 310% more of deep seated bet rock ground water in comparision with minor structures of joints, bedding planes, and so on that are occured at high land. 50 numbers of water well drilled at crystalline rocks were specially checked and measured it's ground water yie 1ds at each drilled depth to determine each interval's productivity while hammer drilling was going on. The results indicate that the specific capacity and yield of each water well at a depth below 70M to 80M was almost neglegible. It means that optimum well depth of crystalline rocks, except the area having seizable geologic structures, shall be not deeper than 80M.

  • PDF

Balancing Water Supply Reliability, Flood Hazard Mitigation and Environmental Resilience in Large River Systems

  • Goodwin, Peter
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.1-1
    • /
    • 2016
  • Many of the world's large ecosystems are severely stressed due to population growth, water quality and quantity problems, vulnerability to flood and drought, and the loss of native species and cultural resources. Consequences of climate change further increase uncertainties about the future. These major societal challenges must be addressed through innovations in governance, policy, and ways of implementing management strategies. Science and engineering play a critical role in helping define possible alternative futures that could be achieved and the possible consequences to economic development, quality of life, and sustainability of ecosystem services. Science has advanced rapidly during the past decade with the emergence of science communities coalescing around 'Grand Challenges' and the maturation of how these communities function has resulted in large interdisciplinary research networks. An example is the River Experiment Center of KICT that engages researchers from throughout Korea and the world. This trend has been complemented by major advances in sensor technologies and data synthesis to accelerate knowledge discovery. These factors combine to allow scientific debate to occur in a more open and transparent manner. The availability of information and improved communication of scientific and engineering issues is raising the level of dialogue at the science-policy interface. However, severe challenges persist since scientific discovery does not occur on the same timeframe as management actions, policy decisions or at the pace sometimes expected by elected officials. Common challenges include the need to make decisions in the face of considerable uncertainty, ensuring research results are actionable and preventing science being used by special interests to delay or obsfucate decisions. These challenges are explored in the context of examples from the United States, including the California Bay-Delta system. California transfers water from the wetter northern part of the state to the drier southern part of the state through the Central Valley Project since 1940 and this was supplemented by the State Water Project in 1973. The scale of these activities is remarkable: approximately two thirds of the population of Californians rely on water from the Delta, these waters also irrigate up to 45% of the fruits & vegetables produced in the US, and about 80% of California's commercial fishery species live in or migrate through the Bay-Delta. This Delta region is a global hotspot for biodiversity that provides habitat for over 700 species, but is also a hotspot for the loss of biodiversity with more than 25 species currently listed by the Endangered Species Act. Understanding the decline of the fragile ecosystem of the Bay-Delta system and the potential consequences to economic growth if water transfers are reduced for the environment, the California State Legislature passed landmark legislation in 2009 (CA Water Code SS 85054) that established "Coequal goals of providing a more reliable water supply for California and protecting, restoring, and enhancing the Delta ecosystem". The legislation also stated that "The coequal goals shall be achieved in a manner that protects and enhances the unique cultural, recreational, natural resource, and agricultural values of the Delta as an evolving place." The challenges of integrating policy, management and scientific research will be described through this and other international examples.

  • PDF

Environmental Impact Assessment within Regional and Municipal Planning (지역 및 도시계획에서의 환경영향평가)

  • Socher, Wolfgang
    • Journal of Environmental Impact Assessment
    • /
    • v.4 no.3
    • /
    • pp.27-29
    • /
    • 1995
  • Within regional and municipal planning we are using several levels or types of EIA in the city of Dresden. Some of these types, practical aspects and some experiences of our work will be presented in this contribution. Firstly I may introduce you to some general conditions for your better understanding of our principles of work. Surely you know about. the destruction of the political and economical structures in Eastern Germany since 1989. Until today our not quite simple task is to build up new ones. At the same time people were in great expectation of freedom and high standard of living as soon as possible. Economical difficulties increased in association with the breakdown of the market in Eastern Europe. How to rebuild industrial estatements and how to renew the traffic systems? We had to find answers to all these complex question. Should we only repair the former damages or could we reach a really environmental sound production for the future? The demand for a rapid economic growth is an incredible challenge for the application of new environmental ideas. I am truly not sure whether you know the city of Dresden or not. So I would like to give you a short introduction. Dresden is situated in a valley shaped by the river Elbe. There live about 500,000 people. Dresden has a great reputation for arts and sciences. Its also well know as a town of high technology industries such as electronics and optics. We restored the power plant and therefore we don't need any atomic power plants actually we haven't got one. Since 1990 there were founded many official agencies in Dresden because it is the capatal of Saxony. Considering nature and environment we there is a large forest area called "Dresdner Heide". The river Elbe and the meadows are situated on both sides of the river. There are a lot of green and free places in the city area too. Furtheron there is something unusual for a large city: about 50% of the drinking water resources mostly take place within the city itself. The origin is the ground water as well as water from the river Elbe after filtration of course.

  • PDF