• 제목/요약/키워드: Validation and Verification Test

검색결과 165건 처리시간 0.029초

On validation of fully coupled behavior of porous media using centrifuge test results

  • Tasiopoulou, Panagiota;Taiebat, Mahdi;Tafazzoli, Nima;Jeremic, Boris
    • Coupled systems mechanics
    • /
    • 제4권1호
    • /
    • pp.37-65
    • /
    • 2015
  • Modeling and simulation of mechanical response of infrastructure object, solids and structures, relies on the use of computational models to foretell the state of a physical system under conditions for which such computational model has not been validated. Verification and Validation (V&V) procedures are the primary means of assessing accuracy, building confidence and credibility in modeling and computational simulations of behavior of those infrastructure objects. Validation is the process of determining a degree to which a model is an accurate representation of the real world from the perspective of the intended uses of the model. It is mainly a physics issue and provides evidence that the correct model is solved (Oberkampf et al. 2002). Our primary interest is in modeling and simulating behavior of porous particulate media that is fully saturated with pore fluid, including cyclic mobility and liquefaction. Fully saturated soils undergoing dynamic shaking fall in this category. Verification modeling and simulation of fully saturated porous soils is addressed in more detail by (Tasiopoulou et al. 2014), and in this paper we address validation. A set of centrifuge experiments is used for this purpose. Discussion is provided assessing the effects of scaling laws on centrifuge experiments and their influence on the validation. Available validation test are reviewed in view of first and second order phenomena and their importance to validation. For example, dynamics behavior of the system, following the dynamic time, and dissipation of the pore fluid pressures, following diffusion time, are not happening in the same time scale and those discrepancies are discussed. Laboratory tests, performed on soil that is used in centrifuge experiments, were used to calibrate material models that are then used in a validation process. Number of physical and numerical examples are used for validation and to illustrate presented discussion. In particular, it is shown that for the most part, numerical prediction of behavior, using laboratory test data to calibrate soil material model, prior to centrifuge experiments, can be validated using scaled tests. There are, of course, discrepancies, sources of which are analyzed and discussed.

한국형 틸팅열차 연결기시스템의 충돌성능 시험 (The impact test for automatic coupler system on the Korean Tilting Train eXpress)

  • 김기남;고태환;장현목;박영일
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.126-131
    • /
    • 2007
  • Design for automatic coupler system of Korean Tilting Train eXpress is described. In order to carry out validation & verification activities for system design, test condition is taken into account at collision speed of 10km/h, which is required in Safety Notice for rolling stock vehicle. The study aims at safety validation between a coupler and car body including design verification for a coupler through the identifying of system design and the evaluating of test results.

  • PDF

함정 전투체계 함상시험을 위한 지원장비 설계 및 검증 연구 (A Study on the Design and Verification-Validation of the Supportive Equipment for Shipyard Test of Naval Combat System)

  • 정영란;김철호;한웅기;김재익;김현실
    • 한국군사과학기술학회지
    • /
    • 제17권3호
    • /
    • pp.318-326
    • /
    • 2014
  • The Shipyard Test of Naval Combat System depends on external factors, such as weather conditions and availability of its sensor-weapon, due to the need of on-board sensor-weapon during the test. This paper suggests the Supportive Equipment using virtual simulator for Shipward Test, in case of the unavailability of the on-board sensor-weapon or the test support force(aircraft, surface ship etc.), to pre-check the functions of the combat system as well as to prepare the Shipyard Test. To mock the real sensor-weapon functions as similar as possible, the Supportive Equipment for Shipyard Test was verified by the Verification and Validation process, which is usually performed while developing models in the Modeling & Simulation field.

통합평가 계획수립을 위한 시스템적 접근 프로세스 (Systematic approach process for Integrated Validation & verification Plan)

  • 김진훈;신광복;유원희;구동희
    • 시스템엔지니어링워크숍
    • /
    • 통권1호
    • /
    • pp.9-14
    • /
    • 2003
  • The paper aims at presenting a systematic approach process and a method of requirement validation and system verification. Validation is applied during concept development to ensure conceptual validity, requirements validity, and design validity. Verification work is applied subsequent to the design work on test articles and early production items to produce evidence that the design solutions do, in fact, satisfy th requirements. In this paper, we present a requirements validation model and a system verification model. This models are applied to the development of TTX(Tilting Train Express)system with systems engineering tool, CORE.

  • PDF

전술정보통신체계 ATE 유효성 검증 방안 (Verification Methods of ATE for TICN System)

  • 박현정;김진성
    • 한국산업정보학회논문지
    • /
    • 제25권4호
    • /
    • pp.17-27
    • /
    • 2020
  • 본 논문에서는 무기체계 양산에 활용되는 자동시험장비 (Automatic Test Equipment: ATE)의 유효성 입증을 위한 검증 방안을 제안하였다. 검증되지 않은 시험장비의 시험 데이터는 신뢰성이 미흡하여 객관적인 자료로써 활용이 제한되므로 ATE를 활용한 시험대상품의 품질 수준을 확보하기 위해서 시험장비의 검증이 필수적이다. 제시된 방법을 통해 전술정보통신체계 ATE에 적용하여 검증 결과를 확인하고 유효성 입증 결과를 기술한다.

심해저 채광로봇 기술개발을 위한 Verification & Validation의 적용 (Application of Verification & Validation for deepsea mining robot technology development)

  • 성기영;조수길;오재원;여태경;홍섭;김형우
    • 한국산업융합학회 논문집
    • /
    • 제22권6호
    • /
    • pp.689-702
    • /
    • 2019
  • This paper deals with the verification of the functions about mining robot, which is the system for developing deep seabed resources by applying V&V(verification and validation). In order to overcome water pressure of 500 bar and to travel on soft ground, and to operate in deep sea environment with bad conditions, it is necessary to develop a robot that can satisfy various deepsea conditions. A mining robot has been developed based on simulation based design and Multidisciplinary design optimization. In order to verify the developed robot, lab test and real sea test should be performed for various marine environment conditions. There are too many requirements to consider, such as space, time, cost, personnel, and environment to do performance test. So it is costly and time consuming for developing robot. In order to solve this problems, V&V technique was applied to mining robot. The stages of mining robot design, fabrication and commission were verified.

프로토콜 검증시스템의 설계 및 구현 (DESIGN AND IMPLEMENTATION OF A PROTOCOL VERIFICATION SYSTEM)

  • 김용진
    • ETRI Journal
    • /
    • 제11권4호
    • /
    • pp.22-36
    • /
    • 1989
  • In this paper, a design and implementation of an efficient protocol verification system named LOVE has been described. The LOVE has been developed specifically for LOTOS. It performs not only protocol syntax validation (PSV) but also protocol functional verification(PFV). The PSV is a test to check if a protocol is free from protocol syntax errors such as deadlocks and livelocks. The PFV confirms whether or not a protocol achieves its functional objectives. For the PSV, the reachability analysis is employed, and the observational equivalence test is used for the PFV. For protocol verification using the LOVE, a schematic protocol verification methodology has been outlined.

  • PDF

한국형 고무차륜 경량전철시스템에 대한 요구사항 검증계획 (Requirements Validation Plan for korean Rubber-Tired AGT System)

  • 목재균;이안호;한석윤
    • 시스템엔지니어링워크숍
    • /
    • 통권1호
    • /
    • pp.27-31
    • /
    • 2003
  • This study is in a part of requirements validation plan for korean rubber-tired AGT system on test track. The AGT system is consisted subsystems as vehicle, signalling, communication, power distribution and infrastructure for rubber tire running on track. The subsystems will be installed and integrated on test track till next year for test and evaluation. This paper shows overview for test and evaluation in terms of system requirements and its validation classification, test track configuration, measuring system requirements and its configuration. The whole process of system integration and its validation will be controlled by means of KMS including documentation.

  • PDF

On the Safety and Performance Demonstration Tests of Prototype Gen-IV Sodium-Cooled Fast Reactor and Validation and Verification of Computational Codes

  • Kim, Jong-Bum;Jeong, Ji-Young;Lee, Tae-Ho;Kim, Sungkyun;Euh, Dong-Jin;Joo, Hyung-Kook
    • Nuclear Engineering and Technology
    • /
    • 제48권5호
    • /
    • pp.1083-1095
    • /
    • 2016
  • The design of Prototype Gen-IV Sodium-Cooled Fast Reactor (PGSFR) has been developed and the validation and verification (V&V) activities to demonstrate the system performance and safety are in progress. In this paper, the current status of test activities is described briefly and significant results are discussed. The large-scale sodium thermal-hydraulic test program, Sodium Test Loop for Safety Simulation and Assessment-1 (STELLA-1), produced satisfactory results, which were used for the computer codes V&V, and the performance test results of the model pump in sodiumshowed good agreement with those in water. The second phase of the STELLA program with the integral effect tests facility, STELLA-2, is in the detailed design stage of the design process. The sodium thermal-hydraulic experiment loop for finned-tube sodium-to-air heat exchanger performance test, the intermediate heat exchanger test facility, and the test facility for the reactor flow distribution are underway. Flow characteristics test in subchannels of a wire-wrapped rod bundle has been carried out for safety analysis in the core and the dynamic characteristic test of upper internal structure has been performed for the seismic analysis model for the PGSFR. The performance tests for control rod assemblies (CRAs) have been conducted for control rod drive mechanism driving parts and drop tests of the CRA under scram condition were performed. Finally, three types of inspection sensors under development for the safe operation of the PGSFR were explained with significant results.

복합형 유역모델 STREAM의 개발(II): 모델의 시험 적용 (Development of a Hybrid Watershed Model STREAM: Test Application of the Model)

  • 조홍래;정의상;구본경
    • 한국물환경학회지
    • /
    • 제31권5호
    • /
    • pp.507-522
    • /
    • 2015
  • In this study, some of the model verification results of STREAM (Spatio-Temporal River-basin Ecohydrology Analysis Model), a newly-developed hybrid watershed model, are presented for the runoff processes of nonpoint source pollution. For verification study of STREAM, the model was applied to a test watershed and a sensitivity analysis was also carried out for selected parameters. STREAM was applied to the Mankyung River Watershed to review the applicability of the model in the course of model calibration and validation against the stream flow discharge, suspended sediment discharge and some water quality items (TOC, TN, TP) measured at the watershed outlet. The model setup, simulation and data I/O modules worked as designed and both of the calibration and validation results showed good agreement between the simulated and the measured data sets: NSE over 0.7 and $R^2$ greater than 0.8. The simulation results also include the spatial distribution of runoff processes and watershed mass balance at the watershed scale. Additionally, the irrigation process of the model was examined in detail at reservoirs and paddy fields.