• 제목/요약/키워드: Vacuum-compatible air bearing

검색결과 6건 처리시간 0.024초

진공용 공기베어링 배기시스템의 최적설계 (Optimal Design of an Exhaust System of a Vacuum-Compatible Air Bearing)

  • 김경호;박천홍;이후상;김승우
    • 한국정밀공학회지
    • /
    • 제24권6호
    • /
    • pp.86-95
    • /
    • 2007
  • This paper presents the optimal design of an exhaust system of a vacuum-compatible air bearing using a genetic algorithm. To use the air bearings in vacuum conditions, the differential exhaust method is adopted to minimize the air leakage, which prevents air from leaking into a vacuum chamber by recovering air through several successive seal stages in advance. Therefore, the design of the differential exhaust system is very important because several design parameters such as the number of seals, diameter and length of an exhaust tube, pumping speed and ultimate pressure of a vacuum pump, seal length and gap(bearing clearance) influence on the air leakage, that is, chamber's degree of vacuum. In this paper, we used a genetic algorithm to optimize the design parameters of the exhaust system of a vacuum-compatible air bearing under the several constraint conditions. The results indicate that chamber's degree of vacuum after optimization improved dramatically compared to the initial design, and that the distribution of the spatial design parameters, such as exhaust tube diameter and seal length, was well achieved, and that technical limit of the pumping speed was well determined.

진공용 공기베어링의 성능해석 (Performance Analysis of a Vacuum-Compatible Air Bearing)

  • 김경호;박천홍;이후상;김승우
    • 한국정밀공학회지
    • /
    • 제23권10호
    • /
    • pp.103-112
    • /
    • 2006
  • This paper describes a theoretical analysis and experimental verification on the performances of a vacuum-compatible air bearing, which is designed with a cascaded exhaust scheme to minimize the air leakage in a vacuum environment. The design of the vacuum-compatible air bearing equipped with the differential exhaust system requires great care because several design parameters, such as the number of exhaust stages, diameter of exhaust tube, pumping speed of a vacuum pump, and bearing clearance greatly influence the air leakage and thus degree of vacuum. In this study, a performance analysis method was proposed to estimate the performances of the air bearing, such as load capacity, stiffness, and air leakage. Results indicate that the load capacity and stiffness of the air bearing was improved as its boundary pressure, which was determined by the $1^{st}$ exhaust method, was lowered, and the dominant factors on the chamber's degree of vacuum were the number of exhaust stages, exhaust tube diameter and bearing clearance. A vacuum chamber and air bearing stage using porous pad were fabricated to verify the theoretical analysis. The results demonstrate that chamber pressure up to an order of $10^{-3}$ Pa was achieved with the air bearing stage operating inside the chamber, and this analysis method was valid by comparing predicted values with experimental data, for the mass flow rates from the porous pad, and pressures at each exhaust port and chamber, respectively.

진공환경용 공기베어링의 Leakage 해석 (Leakage Analysis of Air Bearing for Vacuum Environment)

  • 김경호;박천홍;이후상;김승우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.912-915
    • /
    • 2004
  • A vacuum environment is very important for NGL(Next Generation Lithography) apparatuses such as EUVL(Extreme Ultra Violet Lithography) or EPL(Electron Projection Lithography) and so on. The performance of these systems is dominated by vacuum level of processing and positioning accuracy of a stage. So, ultra-precision stage usable in a high vacuum level is needed for the improved performance of these devices. In contrast to atmospheric condition, a special attention must be paid to guide bearing, actuator and other elements. In this paper, air bearing is adopted because of its very high motional accuracy. So, air bearing is designed to be vacuum compatible using differential exhaust method, which prevents air from entering into vacuum chamber. For this, leakage analysis is performed theoretically and verified from experiment.

  • PDF