• Title/Summary/Keyword: Vacuum insulation

Search Result 148, Processing Time 0.028 seconds

An Analysis of Insulation Performance Result from Shield of Outside Vacuum interrupter (진공인터럽터 외부쉴드가 절연성능에 미치는 영향 분석)

  • Yoon, Jae-Hun;Lim, Gee-Jo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.100-100
    • /
    • 2010
  • Because of power consumption increase, global wanning, and limitation of installation, not only high reliability and interruption capability but also compact and light power apparatuses are needed. To improve the insulation performance, the high E field concentration phenomena was considered. Breakdown mechanism in vacuum is different from that in other insulation materials. therefore, It is necessary to understand the electric field distribution and insulation characteristics. This paper discusses the simulation and LI(light impulse) test of the shield of outside vacuum interrupter As a result, FEM simulation and LI test show that improve distribution of electrical field and equi-potential line. due to external shield. in this case, outside shield induced electric field of triple junction point.

  • PDF

Simple predictive heat leakage estimation of static non-vacuum insulated cryogenic vessel

  • Mzad, Hocine
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.3
    • /
    • pp.25-30
    • /
    • 2020
  • The diminishing of heat leak into cryogenic vessels can prolong the storage time of cryogenic liquid. With the storage of cryogenic liquid reducing, the heat leak decreases, while the actual storage time increases. Regarding to the theoretical analysis, the obtained results seems to be constructive for the cryogenic insulation system applications. This study presents a predictive assessment of heat leak occurring in non-vacuum tanks with a single layer of insulation. A Radial steady-state heat transfer, based on heat conduction equation, is taken into consideration. Graphical results show the thermal performance of the insulation used, they also allow us to choose the appropriate insulation thickness according to the shape and diameter of the storage tank.

Experimental Study on Manufacturing of Insulation Vacuum Glazing and Measurement of the Thermal Conductance (단열 진공유리의 제작 및 열전달계수 측정에 관한 실험적 연구)

  • Lee Bo-Hwa;Yoon Il-Seob;Kwak Ho-Sang;Song Tae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.8 s.251
    • /
    • pp.772-779
    • /
    • 2006
  • Window is a critical component in the design of energy-efficient buildings. To minimize the heat loss, insulation performance of the glazing has to be improved. Manufacturing of vacuum glazing has been motivated by the possibility of making windows of very good thermal insulation properties for such applications. It is made by maintaining vacuum in the gap between two glass panes. Pillars are placed between them to withstand the atmospheric pressure. Edge covers are applied to reduce conduction through the edge. Accurate measurements have been made of the radiative heat transfer, the pillar conduction and the gas conduction using a guarded hot plate apparatus. Vacuum glazing is found to have low thermal conductance roughly below $1W/m^2K$. Among the heat transfer modes of residual gas conduction, conduction through support pillar and the radiative heat transfer between the glass panes, the last one is the most dominant to the overall thermal conductance. Vacuum glazing using very low emittance AI-coated glass has an overall thermal conductance of about $0.7W/m^2K$.

A Study on Insulation Properties of Global VPI Type Generator through Replacement of Stator Windings

  • Kong, Taesik;Kim, Heedong;Lee, Sooho;Park, Jaehyun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.2
    • /
    • pp.113-117
    • /
    • 2017
  • As the competition in the manufacturing market for small and medium sized generators is intensifying, there is increasing pressure to reduce production cost. Manufacturing the generator stator windings with global vacuum pressure impregnation (GVPI) is a very effective way to reduce costs. However, the stator winding has a fatal disadvantage in that the insulation wears due to vibration in the slot. KEPRI (KEPCO Research Institute) conducted insulation diagnosis for three generators in KOMIPO (Korea Midland Power Co., Ltd.) which were manufactured by GVPI and operated for about 17 years. Insulation diagnosis showed that deterioration of insulation has progressed significantly. Therefore, KEPRI recommended replacing the stator windings of all three generators. In this paper, the insulation properties of the generator stator winding with global GVPI are described by comparing and analyzing the insulation diagnosis results and visual inspection for stator windings.

Reduction of the Electric Field Concentration at the Triple Junction of the Vacuum Interrupter by Using the Application of Functionally Graded Material (기능성 경사 재료의 적용을 통한 진공 인터럽터의 삼중점 전계 완화)

  • Choi, Seung-Kil;Gu, Chi-Wuk;Ju, Heung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.10
    • /
    • pp.630-635
    • /
    • 2015
  • A vacuum Interrupter (VI), a core part that composes the breaking part of medium-voltage vacuum circuit breaker (VCB), has the excellent insulation performance and arc-extinguishing capability. $SF_6$ gas had been used for the external insulation of VIs since the dielectric strength of $SF_6$ gas is superior to that of other insulation gases. However, because of environmental problems related with global warming, a solid-insulated technology was recently researched. The functionally graded material (FGM), as changing spatially the distribution of the relative permittivity inside an insulator, can reduce the electric field stress at the specific region. Especially, the external insulation performance of the VI with the molded FGM insulator is greatly improved as compared with that of the existing VI or the VI with a new external shield. In this paper, the effectiveness of this FGM insulator is verified by the numerical simulation.

Thermal Property Characteristics of Super insulation Vacuum Panel (초진공 단열재의 열 물성 특성에 관한 연구)

  • Jeon, Hyun-Seok;Choi, Hyoun-Jung;Choi, Gyoung-Seok;Kang, Jae-Sik;Lee, Seung-Eon
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.599-602
    • /
    • 2009
  • Recently, some major environmental problems are the increase of fossil fuel price and $CO_2$ emission. To solve these problems, it is imperative to develop eco-friendly techniques and to reduce energy consumption in apartment complexes. Therefore, an effective system for insulation needs to be developed to reduce energy consumption. This study compares thermal characteristics between general insulation and super insulation Vacuum Panel, which is thinner and has more insulation efficiency.

  • PDF

A Study on Insulation Property of VPI Type Generator Stator Winding Through the Case Analysis of Insulation Breakdown (절연파괴 사례분석을 통한 진공함침 방식 발전기 고정자권선의 절연특성 연구)

  • Kong, Tae-Sik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.3
    • /
    • pp.311-316
    • /
    • 2010
  • According to increase of combined cycle power generation, the manufacturing market of gas turbine generator has become more competitive, so there is high pressure on the manufacturer to reduce generator price. Global VPI(vacuum pressure impregnation) method is effective to save the production cost and time for manufacturing stator windings, but it has an abrasion problem by vibration between stator windings and slots. This paper presents the insulation breakdown case, which is for VPI type generator during high voltage insulation tests, and also shows the cause analysis, repair works as well as reliability test. the purpose of this paper is to understand the insulation properties of VPI type generator and to know prevention of insulation weakness.

Weldment Design of Supports for Cryogenic Storage Tank considering Insulation (단열을 고려한 초저온 액체질소 저장 탱크의 지지대 용접부 설계)

  • Choi, Dong-Jun;Oh, Jung-Taek;Jung, Jae-Hyun;Cho, Jong-Rae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.131-136
    • /
    • 2008
  • The double-walled steel vessel with powder insulation in the space between the walls is used to minimize heat transfer by radiation and conduction in cryogenic storage tank. The vacuum required the insulation is much less extreme than with high-vacuum or multilayer insulations. The solid supports are used to bear the weight of the inner container. Thermal and structural analysis of the tank have been carried out to study the effect of vacuum and weldment geometry of the internal supports. Heat flux in wall is increased with increasing of thermal conductivity of perlite. Heat flux and stress of support is not affected by weldment geometry.

Defect detection of vacuum insulation panel using image analysis based on corner feature detection (코너 특정점 기반의 영상분석을 활용한 진공단열재 결함 검출)

  • Kim, Beom-Soo;Yang, Jeonghyeon;Kim, Yeonwon
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.398-402
    • /
    • 2022
  • Vacuum Insulation Panel (VIP) is an high energy efficient insulation system that facilitate slim but high insulation performance, based on based on a porous core material evacuated and encapsulated in a multi-barrier envelope. Although VIP has been on the market for decades now, it wasn't until recently that efforts have been initiated to propose a standard on aging testing. One of the issues regarding VIP is its durability and aging due to pressure and moisture dependent increase of the initial low thermal conductivity with time. It is hard to visually determine at an early stage. Recently, a method of analyzing the damage on the a material surface by applying image processing technology has been widely used. These techniques provide fast and accurate data with a non-destructive way. In this study, the surface VIP images were analyzed using the Harris corner detection algorithm. As a result, 171,333 corner points in the normal packaging were detected, whereas 32,895 of the defective packaging, which were less than the normal packaging. were detected. These results are considered to provide meaningful information for the determination of VIP condition.