• Title/Summary/Keyword: Vacuum environment

Search Result 517, Processing Time 0.034 seconds

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2015 (설비공학회 분야의 최근 연구 동향 : 2015년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.6
    • /
    • pp.256-268
    • /
    • 2016
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2015. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering were carried out in the areas of flow, heat and mass transfer, cooling and heating, and air-conditioning, the renewable energy system and the flow inside building rooms. Research issues dealing with air-conditioning machines and fire and exhausting smoke were reduced. CFD seems to be spreading to more research areas. (2) Research works on heat transfer area were carried out in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the economic analysis of GHG emission, micro channel heat exchanger, effect of rib angle on thermal performance, the airside performance of fin-and-tube heat exchangers, theoretical analysis of a rotary heat exchanger, heat exchanger in a cryogenic environment, the performance of a cross-flow-type, indirect evaporative cooler made of paper/plastic film. In the area of pool boiling and condensing, the bubble jet loop heat pipe was studied. In the area of industrial heat exchangers, researches were performed on fin-tube heat exchanger, KSTAR PFC and vacuum vessel at baking phase, the performance of small-sized dehumidification rotor, design of gas-injection port of an asymmetric scroll compressor, effect of slot discharge-angle change on exhaust efficiency of range hood system with air curtain. (3) In the field of refrigeration, various studies were carried in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, a cold-climate heat pump system, $CO_2$ cascade systems, ejector cycles and a PCM-based continuous heating system were investigated. In the alternative refrigeration/energy system category, a polymer adsorption heat pump, an alcohol absorption heat pump and a desiccant-based hybrid refrigeration system were investigated. In the system control category, turbo-refrigerator capacity controls and an absorption chiller fault diagnostics were investigated. (4) In building mechanical system research fields, eighteen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the user and location awareness technology applied dimming lighting control system, the lighting performance evaluation for light-shelves, the improvement evaluation of air quality through analysis of ventilation efficiency and the evaluation of airtightness of sliding and LS window systems. The subjects of building energy were worked on the energy saving estimation of existing buildings, the developing model to predict heating energy usage in domestic city area and the performance evaluation of cooling applied with economizer control. The studies were also performed related to the experimental measurement of weight variation and thermal conductivity in polyurethane foam, the development of flame spread prevention system for sandwich panels, the utilization of heat from waste-incineration facility in large-scale horticultural facilities.

Air Sampling and Isotope Analyses of Water Vapor and CO2 using Multi-Level Profile System (다중연직농도시스템(Multi-Level Profile System)을 이용한 수증기와 이산화탄소 시료채취 및 안정동위원소 조성 분석)

  • Lee, Dong-Ho;Kim, Su-Jin;Cheon, Jung-Hwa;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.4
    • /
    • pp.277-288
    • /
    • 2010
  • The multi-level $H_2O/CO_2$ profile system has been widely used to quantify the storage and advection effects on energy and mass fluxes measured by eddy covariance systems. In this study, we expanded the utility of the profile system by accommodating air sampling devices for isotope analyses of water vapor and $CO_2$. A pre-evacuated 2L glass flask was connected to the discharge of an Infrared Gas Analyzer (IRGA) of the profile system so that airs with known concentration of $H_2O$ and $CO_2$ can be sampled. To test the performance of this sampling system, we sampled airs from 8 levels (from 0.1 to 40 m) at the KoFlux tower of Gwangneung deciduous forest, Korea. Air samples in the 2L flask were separated into its component gases and pure $H_2O$ and $CO_2$ were extracted by using a vacuum extraction line. This novel technique successfully produced vertical profiles of ${\delta}D$ of $H_2O$ and ${\delta}^{13}C$ of $CO_2$ in a mature forest, and estimated ${\delta}D$ of evapotranspiration (${\delta}D_{ET}$) and ${\delta}^{13}C$ of $CO_2$ from ecosystem respiration (${\delta}^{13}C_{resp}$) by using Keeling plots. While technical improvement is still required in various aspects, our sampling system has two major advantages over other proposed techniques. First, it is cost effective since our system uses the existing structure of the profile system. Second, both $CO_2$ and $H_2O$ can be sampled simultaneously so that net ecosystem exchange of $H_2O$ and $CO_2$ can be partitioned at the same temporal resolution, which will improve our understanding of the coupling between water and carbon cycles in terrestrial ecosystems.

High quality topological insulator Bi2Se3 grown on h-BN using molecular beam epitaxy

  • Park, Joon Young;Lee, Gil-Ho;Jo, Janghyun;Cheng, Austin K.;Yoon, Hosang;Watanabe, Kenji;Taniguchi, Takashi;Kim, Miyoung;Kim, Philip;Yi, Gyu-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.284-284
    • /
    • 2016
  • Topological insulator (TI) is a bulk-insulating material with topologically protected Dirac surface states in the band gap. In particular, $Bi_2Se_3$ attracted great attention as a model three-dimensional TI due to its simple electronic structure of the surface states in a relatively large band gap (~0.3 eV). However, experimental efforts using $Bi_2Se_3$ have been difficult due to the abundance of structural defects, which frequently results in the bulk conduction being dominant over the surface conduction in transport due to the bulk doping effects of the defect sites. One promising approach in avoiding this problem is to reduce the structural defects by heteroepitaxially grow $Bi_2Se_3$ on a substrate with a compatible lattice structure, while also preventing surface degradation by encapsulating the pristine interface between $Bi_2Se_3$ and the substrate in a clean growth environment. A particularly promising choice of substrate for the heteroepitaxial growth is hexagonal boron nitride (h-BN), which has the same two-dimensional (2D) van der Waals (vdW) layered structure and hexagonal lattice symmetry as $Bi_2Se_3$. Moreover, since h-BN is a dielectric insulator with a large bandgap energy of 5.97 eV and chemically inert surfaces, it is well suited as a substrate for high mobility electronic transport studies of vdW material systems. Here we report the heteroepitaxial growth and characterization of high quality topological insulator $Bi_2Se_3$ thin films prepared on h-BN layers. Especially, we used molecular beam epitaxy to achieve high quality TI thin films with extremely low defect concentrations and an ideal interface between the films and substrates. To optimize the morphology and microstructural quality of the films, a two-step growth was performed on h-BN layers transferred on transmission electron microscopy (TEM) compatible substrates. The resulting $Bi_2Se_3$ thin films were highly crystalline with atomically smooth terraces over a large area, and the $Bi_2Se_3$ and h-BN exhibited a clear heteroepitaxial relationship with an atomically abrupt and clean interface, as examined by high-resolution TEM. Magnetotransport characterizations revealed that this interface supports a high quality topological surface state devoid of bulk contribution, as evidenced by Hall, Shubnikov-de Haas, and weak anti-localization measurements. We believe that the experimental scheme demonstrated in this talk can serve as a promising method for the preparation of high quality TI thin films as well as many other heterostructures based on 2D vdW layered materials.

  • PDF

Enhancement and Quenching Effects of Photoluminescence in Si Nanocrystals Embedded in Silicon Dioxide by Phosphorus Doping (인의 도핑으로 인한 실리콘산화물 속 실리콘나노입자의 광-발광현상 증진 및 억제)

  • Kim Joonkon;Woo H. J.;Choi H. W.;Kim G. D.;Hong W.
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.2
    • /
    • pp.78-83
    • /
    • 2005
  • Nanometric crystalline silicon (no-Si) embedded in dielectric medium has been paid attention as an efficient light emitting center for more than a decade. In nc-Si, excitonic electron-hole pairs are considered to attribute to radiative recombination. However the surface defects surrounding no-Si is one of non-radiative decay paths competing with the radiative band edge transition, ultimately which makes the emission efficiency of no-Si very poor. In order to passivate those defects - dangling bonds in the $Si:SiO_2$ interface, hydrogen is usually utilized. The luminescence yield from no-Si is dramatically enhanced by defect termination. However due to relatively high mobility of hydrogen in a matrix, hydrogen-terminated no-Si may no longer sustain the enhancement effect on subsequent thermal processes. Therefore instead of easily reversible hydrogen, phosphorus was introduced by ion implantation, expecting to have the same enhancement effect and to be more resistive against succeeding thermal treatments. Samples were Prepared by 400 keV Si implantation with doses of $1\times10^{17}\;Si/cm^2$ and by multi-energy Phosphorus implantation to make relatively uniform phosphorus concentration in the region where implanted Si ions are distributed. Crystalline silicon was precipitated by annealing at $1,100^{\circ}C$ for 2 hours in Ar environment and subsequent annealing were performed for an hour in Ar at a few temperature stages up to $1,000^{\circ}C$ to show improved thermal resistance. Experimental data such as enhancement effect of PL yield, decay time, peak shift for the phosphorus implanted nc-Si are shown, and the possible mechanisms are discussed as well.

Evaluation of microbiological, cellular and risk factors associated with subclinical mastitis in female buffaloes

  • de Oliveira Moura, Emmanuella;do Nascimento Rangel, Adriano Henrique;de Melo, Maria Celeste Nunes;Borba, Luiz Henrique Fernandes;de Lima, Dorgival Morais Junior;Novaes, Luciano Patto;Urbano, Stela Antas;de Andrade Neto, Julio Cesar
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.9
    • /
    • pp.1340-1349
    • /
    • 2017
  • Objective: This study aimed to evaluate the microbiological and cellular milk profile for the diagnosis of subclinical mastitis in female buffaloes and to assess risk factors for predisposition of the disease. Methods: Analyses were carried out by standard plate count (SPC), identification of species and antibiotic resistance, somatic cell count (SCC), electrical electrical conductivity of milk (ECM), and lactoferrin content in milk. Teat cups were swabbed to evaluate risk factors, observing hyperkeratosis, milking vacuum pressure and cleanliness of the site. Hence, 30 female buffaloes were randomly selected (15 from a group in early lactation and 15 in late lactation). Results: The most common bacteria in the microbiological examination were Staphylococcus spp., Streptococcus spp. and Corynebacterium sp. In the antibiotic sensitivity test, 10 (58.82%) of the 17 antibiotics tested were sensitive to all isolates, and resistant bacteria were Streptococcus uberis, Streptococcus dysgalactiae, Streptococcus haemolyticus, and Escherichia coli. It was observed that positive samples in the microbiological examination showed total bacterial count between $9.10{\times}10^3$ to $6.94{\times}10^6$ colony forming units/mL, SCC between 42,000 to 4,320,000 cells/mL and ECM ranging from 1.85 to 7.40 mS/cm. It was also found that the teat cups had high microbial counts indicating poor hygiene, and even faults in the cleanliness of the animals' waiting room were observed. It is concluded that values of SCC above 537,000 cells/mL and ECM above 3.0 mS/mL are indications of mammary gland infection for this herd; however, the association of these values with a microbiological analysis is necessary to more accurately evaluate the health status of mammary glands with subclinical mastitis. Conclusion: Through phenotypic characterization of bacteria involved in the samples, the genera Staphylococcus spp., Streptococcus spp., and Corynebacterimum bovis were the most prevalent in this study. Faults in environment and equipment hygienization are factors that are directly associated with mastitis.

A Numerical Study on the Performance Analysis of a Solar Air Heating System with Forced Circulation Method (강제순환 방식의 공기가열식 태양열 집열기의 성능분석에 관한 수치해석 연구)

  • Park, Hyeong-Su;Kim, Chul-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.122-126
    • /
    • 2017
  • The aim of this study was to develop a device for solving the heating problem of living space using heated air, utilizing a simple air heater type collector for solar energy. At the present time, this study assessed the possibility of a development system through theoretical calculations for the amount of available energy according to the size change of the air-heated solar energy collector. To produce and supply hot water using the heat energy of the sun, hot water at $100^{\circ}C$ or less was produced using a flat or vacuum tube type collector. The purpose of this study was to research the air heating type solar collector that utilizes heating energy with heating air above $75^{\circ}C$, by designing and manufacturing an air piping type solar collector that is a simpler type than a conventional solar collector system. The analysis results were obtained for the generated air temperature ($^{\circ}C$) and the production of air (kg/h) to determine the performance of air heating by an air-heated solar collector according to the heat transfer characteristics in the collector of the model when a specified amount of heat flux was dropped into a solar collector of a certain size using PHOENICS, which is a heat flow analysis program applying the Finite Volume Method. From the analysis result, the temperature of the air obtained was approximately $40.5^{\circ}C$, which could be heated using an air heating tube with an inner diameter of 0.1m made of aluminum in a collector with a size of $1.2m{\times}1.1m{\times}0.19m$. The production of air was approximately 161 m3/h. This device can be applied to maintain a suitable environment for human activity using the heat energy of the sun.

A Critical Review of the Transfer of Presidential Security Work to the Police (대통령경호업무 경찰 이관에 대한 비판적 소고)

  • Jo, Sung-gu
    • Korean Security Journal
    • /
    • no.58
    • /
    • pp.177-194
    • /
    • 2019
  • Last year, the Moon Jae-In administration made an attempt to abolish the presidential security office overseeing the presidential security and to transfer the work to the presidential security service under the National Police Agency. Currently, all of the G7 nations maintain a security system spearheaded by the police, so the policy of transferring the presidential security to the National Police Agency may be discussed. However, it is necessary to focus on the following reality. First, the current presidential security system is consisted of the overlapping security organizations classified into (1) inner ring of the presidential security agency, (2) middle ring of the police agency, and (3) outer ring of the capital defense command. If the presidential security agency is abolished, a vacuum will result as per the principle of class. Second, for the efficient security guard of the President, currently, the presidential security agency at the Presidential Security Safety Measure Committee plays the role of coordinating the tasks. If the National Police Agency becomes the control tower of the presidential security, whether command will be available for the military and diplomatic aspects of the presidential security work should also be considered. Third, Korea is currently in a truce with North Korea, so there is a big difference in terms of the security environment with such G7 nations as the UK, Germany, France, and Japan.

STSAT-3 Main Payload, MIRIS Flight Model Developments

  • Han, Won-Yong;Lee, Dae-Hee;Park, Young-Sik;Jeong, Woong-Seob;Ree, Chang-Hee;Moon, Bong-Kon;Park, Sung-Joon;Cha, Sang-Mok;Nam, Uk-Won;Park, Jang-Hyun;Lee, Duk-Hang;Ka, Nung-Hyun;Seon, Kwang-Il;Yang, Sun-Choel;Park, Jong-Oh;Rhee, Seung-Wu;Lee, Hyung-Mok;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.40.1-40.1
    • /
    • 2010
  • The Main payload of the STSAT-3 (Korea Science & Technology Satellite-3), MIRIS (Multipurpose Infra-Red Imaging System) has been developed for last 3 years by KASI, and its Flight Model (FM) is now being developed as the final stage. All optical lenses and the opto-mechanical components of the FM have been completely fabricated with slight modifications that have been made to some components based on the Engineering Qualification Model (EQM) performances. The components of the telescope have been assembled and the test results show its optical performances are acceptable for required specifications in visual wavelength (@633 nm) at room temperature. The ensuing focal plane integration and focus test will be made soon using the vacuum chamber. The MIRIS mechanical structure of the EQM has been modified to develop FM according to the performance and environment test results. The filter-wheel module in the cryostat was newly designed with Finite Element Analysis (FEM) in order to compensate for the vibration stress in the launching conditions. Surface finishing of all components were also modified to implement the thermal model for the passive cooling technique. The FM electronics design has been completed for final fabrication process. Some minor modifications of the electronics boards were made based on EQM test performances. The ground calibration tests of MIRIS FM will be made with the science grade Teledyne PICNIC IR-array.

  • PDF

Studies on the Manufacturing of Sujeonggwa (Korean Traditional Cinnamon Flavored Persimmon Punch) Edible in Severe Environment by Gamma Irradiation (감마선 조사기술 이용 극한환경에서도 취식 가능한 수정과 제조에 관한 연구)

  • Park, Jae-Nam;Lee, Ju-Woon;Kim, Jae-Hun;Kim, Kwan-Soo;Han, Kyu-Jai;Sul, Min-Sook;Lee, Hyun-Ja;Byun, Myung-Woo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.5
    • /
    • pp.609-615
    • /
    • 2007
  • This study was conducted to develop the method for the safe supply of Sujeonggwa (cinnamon flavored persimmon punch) in severe environments such as space, desert or deep sea, by the combined treatment of gamma irradiation with other food technologies. Commercially prepared Sujeonggwa powder could be sterilized at 4.5 kGy or above doses. However, sensory characteristics of gamma-irradiated Sujeonggwa decreased depending upon the dose. The combined treatment of vacuum packaging with the addition of vitamin C and cinnamic aldehyde in Sujeonggwa powder could minimize the change of sensory qualities induced by ionizing irradiation.

Flow Rate Changes in the Heterogeneous Rectangular Microchannels with Different Hydrophilicity for the PDMS Bottom Surface (PDMS 표면특성에 따른 비균일계 마이크로채널의 유속 변화)

  • Noh, Soon-Young;Lee, Hyo-Song;Kim, Ki-Ho;Choi, Jae-Ho;Yu, Jae-Keun;Yoon, Soo-Kyung;Rhee, Young-Woo
    • Clean Technology
    • /
    • v.13 no.3
    • /
    • pp.195-200
    • /
    • 2007
  • This study investigated the flow rate changes of the heterogeneous rectangular microchannels which have different hydrophilic property on the bottom surface. The heterogeneous rectangular microchannel has three native PDMS (poly-dimethyl siloxane) surfaces which were patterned by the soft lithography. PDMS bottom surface was treated by the argon plasma and coated by the allyl alcohol (99%). The channel length was 10, 20 and 30 mm and the channel width was 100, 200 and $300\;{\mu}m$, respectively. Several external voltages were applied to make the fluid flow by the electroosmosis in the microchannel. For the same electric field strength and hydrophilicity of the bottom surface, the flow rate is almost same. This result is matched to the theoretical expectation and confirms that the experimental system is reliable. With increasing the channel width, the flow rate increased for the same hydrophilicity of the bottom surface. The flow rate of the microchannel of higher hydrophilicity was larger than that of the microchannel of lower hydrophilicity. This result implies that the hydrophilicity change of the bottom surface could be applied to control the flow rate in the microchannel.

  • PDF