• Title/Summary/Keyword: Vacuum dry

Search Result 325, Processing Time 0.026 seconds

Effects of Aging and Aging Method on Physicochemical and Sensory Traits of Different Beef Cuts

  • Kim, Minsu;Choe, Juhui;Lee, Hyun Jung;Yoon, Yeongkwon;Yoon, Sungho;Jo, Cheorun
    • Food Science of Animal Resources
    • /
    • v.39 no.1
    • /
    • pp.54-64
    • /
    • 2019
  • Wet and dry aging methods were applied to improve the quality of three different beef cuts (butt, rump, and sirloin) from Hanwoo cows (quality grade 2, approximately 50-mon-old). After 28 d of wet aging (vacuum packaged; temperature, $2{\pm}1^{\circ}C$) and dry aging (air velocity, 2-7 m/s; temperature, $1{\pm}1^{\circ}C$; humidity, $85{\pm}10%$), proximate composition, cooking loss, water holding capacity, shear force, color, nucleotides content, and sensory properties were compared with a non-aged control (2 d postmortem). Both wet and dry aging significantly increased the water holding capacity of the butt cuts. Dry aging in all beef cuts induced lower cooking loss than that in wet-aged cuts. Shear force of all beef cuts was decreased after both wet and dry aging and CIE $L^*$, $a^*$, and $b^*$ color values in butt and sirloin cuts were higher in both wet and dry aging (p<0.05) groups than those in the non-aged control. Regardless of the aging method used, inosine-5'-monophosphate content among beef cuts was the same. The sensory panel scored significantly higher values in tenderness, flavor, and overall acceptability for dry-aged beef regardless of the beef cuts tested compared to non- and wet-aged cuts. In addition, dry-aged beef resulted in similar overall acceptability among the different beef cuts, whereas that in wet-aged meat was significantly different by different beef cuts. In conclusion, both wet and dry aging improved the quality of different beef cuts; however, dry aging was more suitable for improving the quality of less preferred beef cuts.

A Study of a Method to Evaluate the Corrosion Resistance of Al2O3 Coated Vacuum Components for Semiconductor Equipment (반도체 장비용 Al2O3 코팅 진공부품의 내부식성 평가 연구)

  • You, S.M.;Yun, J.Y.;Kang, S.W.;Shin, J.S.;Seong, D.J.;Shin, Y.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.175-182
    • /
    • 2008
  • This study is concerned with the evaluation of the corrosion resistance of coated semiconductor equipment parts with various processes. To select the appropriate basis for evaluation, replacement parts were observed during the semiconductor manufacturing process. This study also ran a dry corrosion test using $Al_2O_3$, which is mostly used as a coating material. This test quantitatively measured the efficiency of coated parts. Surface morphology, leakage current and breakdown voltage were also evaluated. This study showed that a dry corrosion process led to the drop of electrical properties, for example, the leakage current increase and the dielectric strength decrease. The surface morphology test displayed that surface damage is largely dependent on the exposure time to corrosive environments. By using the values that changed during the corrosion process, it may be possible to contrive a method to evaluate the efficiency of coated parts with various processes.

Surface Micromachined Pressure Sensor with Internal Substrate Vacuum Cavity

  • Je, Chang Han;Choi, Chang Auck;Lee, Sung Q;Yang, Woo Seok
    • ETRI Journal
    • /
    • v.38 no.4
    • /
    • pp.685-694
    • /
    • 2016
  • A surface micromachined piezoresistive pressure sensor with a novel internal substrate vacuum cavity was developed. The proposed internal substrate vacuum cavity is formed by selectively etching the silicon substrate under the sensing diaphragm. For the proposed cavity, a new fabrication process including a cavity side-wall formation, dry isotropic cavity etching, and cavity vacuum sealing was developed that is fully CMOS-compatible, low in cost, and reliable. The sensitivity of the fabricated pressure sensors is 2.80 mV/V/bar and 3.46 mV/V/bar for a rectangular and circular diaphragm, respectively, and the linearity is 0.39% and 0.16% for these two diaphragms. The temperature coefficient of the resistances of the polysilicon piezoresistor is 0.003% to 0.005% per degree of Celsius according to the sensor design. The temperature coefficient of the offset voltage at 1 atm is 0.0019 mV and 0.0051 mV per degree of Celsius for a rectangular and circular diaphragm, respectively. The measurement results demonstrate the feasibility of the proposed pressure sensor as a highly sensitive circuit-integrated pressure sensor.

A Study on an Integrated Drying Machine with Microwave at Vacuum Conditions (진공고주파를 이용한 일체형 건조기개발에 관한 연구)

  • Kim, Taehyung;Ko, Gwang-Soo;Park, Youn Cheol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.9
    • /
    • pp.441-446
    • /
    • 2014
  • In Jeju province, the Citrus is widely spread crop which is the most popular fruit on the island. When the quality of a Citrus is not in a good condition or when its size exceeds or is lower than the set criteria, it is discarded as a waste. In this study, a drying machine for waste Citrus has been developed with 2.6 GHz microwave energy supply to the Citrus at vacuum environment. The vacuum environment of the drying chamber was maintained to reduce the energy supply to the Citrus by lowering the evaporating temperature of the water. The experiment was conducted with variation of the vacuum pressure, interior temperature of the drying chamber, and operating time of the microwave. As a result, the effect of the temperature was shown to be higher than the other two control methods, and it showed with 0.305 g/W evaporation efficiency.

Preparation and Quality of Dried Yam Chip Snack Coated with Ascorbic Acid Cocrystallized Sucrose

  • Kim, Suk-Shin;Koh, Kyung-Hee;Son, Sook-Mee;Oh, Myung-Suk
    • Food Science and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.661-666
    • /
    • 2005
  • The specific objectives of this study were to dry yam chips using microwave vacuum drying, freeze drying and hot air drying, then to coat the dried yam chips with ascorbic acid cocrystallized sucrose, and finally to compare the quality of yam chip snack foods with respect to drying and coating characteristics. The microwave vacuum dried sample showed the highest drying rates and much less surface damage than the hot air dried one did. The shape and color of the microwave vacuum dried/coated sample were allocated between those of the freeze dried/coated sample and the hot air dried/coated sample. The freeze dried/coated sample scored excessively low in organoleptic hardness and chewiness to be suitable as a snack. The hot air dried/coated sample was too deep in color, wrinkled, excessively high in organoleptic hardness and chewiness, and excessively low in mouthfeeling. Therefore, the microwave vacuum dried/coated sample presented the best overall attributes as a snack, with respect to organoleptic characteristics, shape, color, and drying rates.

Analysis of AC Breakdown Voltage of Composite Insulation for Dry-Air/Epoxy (건조공기/에폭시 복합절연물의 AC 파괴전압 분석)

  • Heo, Jun;Lee, Seung-Su;Lim, Kee-Joe;Jung, Hae-Eun;Kang, Seong-Hwa
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.289-290
    • /
    • 2008
  • The purpose of this paper is to analyze AC Breakdown of solid/air composite insulation depending on the thickness and the pressure of dry air for eco-friendly insulation. SF6 gas has been widely used in electric equipment as gas insulation because of high dielectric strength and arc extinguishing performance. However, because SF6 gas is one of the green house effect gases, alternative insulation such as SF6 mixture, extremely low temperature gas, vacuum, liquid and solid insulating are being investigated.

  • PDF

THERMAL RESISTANCE OF BACTERIAL SPORES TO DRY HEAT (세균포자의 건열에 대한 열저항성)

  • HAN Bong-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.10 no.3
    • /
    • pp.145-149
    • /
    • 1977
  • Thermal resistance of dried bacterial spores against dry heat was determined. Spare suspensions of Bacillus subtilis var. niger ATCC 9372, Bacillus stearothermophilus Oxoid Code BR 23 and Clostridium sporogenes ATCC 19404 were located on aluminium strips, dried in electric oven under vacuum at room temperature for 10 minutes. The aluminium strips were laid in the middle of gas flow (hot air and superheated steam) with the velocity of 6 m/sec and heated at $120^{\circ}C$ for 180 seconds. The calculated D-values showed that there were no remarkable differences in the heat resistance of bacterial spares between $R.H.\leqq0.012$ and R. H.=0.51. Furthermore the thermal resistance of B. subtilis spores to dry heat was greater than that of B. stearothermophilus.

  • PDF

FRAPCON analysis of cladding performance during dry storage operations

  • Richmond, David J.;Geelhood, Kenneth J.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.306-312
    • /
    • 2018
  • There is an increasing need in the United States and around the world to move used nuclear fuel from wet storage in fuel pools to dry storage in casks stored at independent spent fuel storage installations or interim storage sites. Under normal conditions, the Nuclear Regulatory Commission limits cladding temperature to $400^{\circ}C$ for high-burnup (>45 GWd/mtU) fuel, with higher temperatures allowed for low-burnup fuel. An analysis was conducted with FRAPCON-4.0 on three modern fuel designs with three representative used nuclear fuel storage temperature profiles that peaked at $400^{\circ}C$. Results were representative of the majority of US light water reactor fuel. They conservatively showed that hoop stress remains below 90 MPa at the licensing temperature limit. Results also show that the limiting case for hoop stress may not be at the highest rod internal pressure in all cases but will be related to the axial temperature and oxidation profiles of the rods at the end of life and in storage.

Tribological Properties of Co-Sputtered $MoS_2$ Films

  • Sagara, K.;Yamazaki, T.;Nishimura, M.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.145-146
    • /
    • 2002
  • Tribological properties of co-sputtered Molybdenum disulfide $(MoS_2)/Carbon\;(C)$ films were studied and compared with those of sputtered $MoS_2$ films. Friction tests were carried out using pin-on-disk friction testers to evluated their friction and wear behaviors in a vacuum ($10^{-5}Pa$), air and humid air of 30, 50, 80% RH. $MoS_2/C$ (14%) composite films exhibited about 9 times longer wear life in a vacuum and about 6 times longer wear life in dry air than $MoS_2$ films did. They also showed stable low friction coefficient of about 0.02 in a vacuum. In humid air, however, $MoS_2/C$ composite films hardly showed good tribological properties.

  • PDF

Vacuum SR Lithography with Using Plasma Polymerized Organo-silicon Resist

  • Morita, Shinzo;Vinogradov, Georgy;Senda, Kenji;Shao, Chunlim
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1994.06a
    • /
    • pp.158.1-158
    • /
    • 1994
  • Totally dry lithography is studying with using plasma polymerized resist for almost 15 years. Recently organo-silicon ITlOnOmer was proposed as a new resist. When the plasma polymerized resist was irradiated through a mask in oxygen gas, the resist was oxidized and a fine pattern of submicron was successfully developed by $Cl_2$ gas plasma.

  • PDF