• 제목/요약/키워드: Vacuum Sensor

검색결과 310건 처리시간 0.044초

탄소나노튜브 전극으로부터 전자방출에 의한 진공도 측정 (Measurement of Vacuum Pressure by Electron Emission from Carbon Nanotube Emitters)

  • 김성진;조규환;김성엽;전재옥;이상훈;최복길
    • 한국전기전자재료학회논문지
    • /
    • 제18권5호
    • /
    • pp.396-400
    • /
    • 2005
  • Carbon nanotubes (CNTs) have been well known as electron emitters for field emission applications like FEDs. In this work, we propose as new application a vacuum sensor using CNTs and discuss its current-voltage characteristics as a function of vacuum pressure. The proposed sensor, based on electrical discharge theories in air gap well-known as Townsend theory and as Paschen's law, works by figuring out the variation of the dark current and the initial breakdown voltage depending on the vacuum pressure of air which can ionize through collisions with the electrons accelerated by high electric field.

가속열화시험을 적용한 MEMS 진공패키지의 신뢰성 분석 및 개선 (Reliability Assessment and Improvement of MEMS Vacuum Package with Accelerated Degradation Test (ADT))

  • 최민석;김운배;정병길;좌성훈;송기무
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제3권2호
    • /
    • pp.103-116
    • /
    • 2003
  • We carry out reliability tests and investigate the failure mechanisms. of the wafer level vacuum packaged MEMS gyroscope sensor using an accelerated degradation test. The accelerated degradation test (ADT) is used to evaluate reliability (and/or life) of the MEMS vacuum package and to select the accelerated test conditions, which reduce the reliability testing time. Using the failure distribution model and stress-life model, we are able to estimate the average life time of the vacuum package, which is well agreed with the measured data. After improving several package reliability issues such as prevention of gas diffusion through package, we carry out another set of accelerated tests at the chosen acceleration level. The results show that reliability of the vacuum packaged gyroscope has been greatly improved and can survive without degradation of performance, which is the Q-factor in gyroscope sensor, during environmental stress reliability tests.

  • PDF

진공여과증착법을 이용한 SWNT-PdOx계 수소센서 (Hydrogen sensor of SWNT-PdOx system using the vacuum filtering deposition method)

  • 김일진;박기배
    • 센서학회지
    • /
    • 제19권2호
    • /
    • pp.87-91
    • /
    • 2010
  • Hydrogen gas sensors were fabricated using $PdO_x$ loaded with SWNTs. The nanoparticle powders of $SWNT_s-PdO_x$ composite were deposited on Si wafer substrates by a vacuum filtering deposition method. The fabricated sensors were tested against hydrogen gas. The composition ratio that exhibited the highest response to hydrogen gases was SWNTs : $PdO_x$ = 98 : 2 in wt% ratio at operating temperature of about $150^{\circ}C$. The response and recovery times were shorter than 1.0 min. in presence of 1000 ppm hydrogen.

자연모사 고감도 촉각센서 기술 (Nature-Inspired high sensitivity tactile sensor technology)

  • 김태위;이은한;강대식
    • 진공이야기
    • /
    • 제4권3호
    • /
    • pp.6-11
    • /
    • 2017
  • The tactile sensor of the future robot is becoming a necessity as a sensory organ which can communicate with the person most directly. Recently, the Nature-inspired technology has provided a new direction for the development of these tactile sensors. Here, we review three different nature-inspired tactile sensory system; high sensitivity pressure sensor inspired by beetle wings, highly sensitive strain sensor inspired by the spider's sensory organs, Tactile sensor inspired by human fingertip. These nature-inspired tactile sensors are expected to provide a breakthrough that not only can sensitively measure the pressure, but also delicately recognize the softness and texture of the material just like human.

The influence of nonlinear damping on the response of a piezoelectric cantilever sensor in a symmetric or asymmetric configuration

  • Habib, Giuseppe;Fainshtein, Emanuel;Wolf, Kai-Dietrich;Gottlieb, Oded
    • Smart Structures and Systems
    • /
    • 제30권3호
    • /
    • pp.239-243
    • /
    • 2022
  • We investigate the influence of nonlinear viscoelastic damping on the response of a cantilever sensor covered by piezoelectric layers in a symmetric or asymmetric configuration. We formulate an initial-boundary-value problem which consistently incorporates both geometric and material nonlinearities including the effect of viscoelastic damping which cannot be ignored for micro- and nano-mechanical sensor operation in a vacuum environment. We employ an asymptotic multiple-scales methodology to yield the system nonlinear frequency response near its primary resonance and employ a model-based estimation procedure to deduce the system damping backone curve from controlled experiments in vacuum. We discuss the effect of nonlinear damping on sensor applications for scanning probe microscopy.

Highly Sensitive and Transparent Pressure Sensor Using Double Layer Graphene Transferred onto Flexible Substrate

  • Chun, Sungwoo;Kim, Youngjun;Jin, Hyungki;Jung, Hyojin;Park, Wanjun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.229.2-229.2
    • /
    • 2014
  • Graphene, an allotrope of carbon, is a two-dimensional material having a unique electro-mechanical property that shows significant change of the electrical conductance under the applied strain. In addition of the extraordinary mechanical strength [1], graphene becomes a prospective candidate for pressure sensor technology [2]. However, very few investigations have been carried out to demonstrate characteristics of graphene sensor as a device form. In this study, we demonstrate a pressure sensor using graphene double layer as an active channel to generate electrical signal as the response of the applied vertical pressure. For formation of the active channel in the pressure sensor, two single graphene layers which are grown on Cu foil (25 um thickness) by the plasma enhanced chemical vapor deposition (PECVD) are sequentially transformed to the poly-di-methyl-siloxane (PDMS) substrate. Dry and wet transfer methods are individually employed for formation of the double layer graphene. This sensor geometry results a switching characteristic which shows ~900% conductivity change in response to the application of pulsed pressure of 5 kPa whose on and off duration is 3 sec. Additionally, the functional reliability of the sensor confirms consistent behavior with a 200-cycle test.

  • PDF

Highly Sensitive Tactile Sensor Using Single Layer Graphene

  • Jung, Hyojin;Kim, Youngjun;Jin, Hyungki;Chun, Sungwoo;Park, Wanjun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.229.1-229.1
    • /
    • 2014
  • Tactile sensors have widely been researched in the areas of electronics, robotic system and medical tools for extending to the form of bio inspired devices that generate feeling of touch mimicking those of humans. Recent efforts in adapting the tactile sensor have included the use of novel materials with both scalability and high sensitivity [1]. Graphene, a 2-D allotrope of carbon, is a prospective candidate for sensor technology, having strong mechanical properties [2] and flexibility, including recovery from mechanical stress. In addition, its truly 2-D nature allows the formation of continuous films that are intrinsically useful for realizing sensing functions. However, very few investigations have been carrier out to investigate sensing characteristics as a device form with the graphene subjected to strain/stress and pressure effects. In this study, we present a sensor of vertical forces based on single-layer graphene, with a working range that corresponds to the pressure of a gentle touch that can be perceived by humans. In spite of the low gauge factor that arises from the intrinsic electromechanical character of single-layer graphene, we achieve a resistance variation of about 30% in response to an applied vertical pressure of 5 kPa by introducing a pressure-amplifying structure in the sensor. In addition, we demonstrate a method to enhance the sensitivity of the sensor by applying resistive single-layer graphene.

  • PDF